Smart Greenhouse Booklet 2019-2020

Created by Bethany Gately & Jaime Marsella

To plant a garden is to believe in tomorrow.

-Audrey Hepburn

Directions for Use:

- Please make a copy of this Google Slides before using
- This way you may remove/edit slides as you see fit

This booklet is meant to do the following:

- Provide a powerpoint for the teacher to project onto the board (to guide the lesson and record student brainstorms)
- Be accessible to students so they can access the directions, code, and reference section, and troubleshoot any problems.

The Mission	Lesson 4a: Temp/Humidity Sensor		
<u>Lesson 1a: Intro to</u> <u>Greenhouses</u>	Lesson 4b: Propeller Fans		
Lesson 1b: Intro to Coding	Lesson 4c: Exhaust Fans		
Lesson 1c: Intro to Devices	Lesson 4d: Servos		
Lesson 2a: LED Light	Lesson 5a: Moisture Sensor		
Lesson 2b: Button	Reference		
Lesson 3a: Grow Lamp	Troubleshooting		
<u>Lesson 3b: Light Sensor</u> (optional)	4		

<u>The Mission</u>: Create & Maintain a "Smart" Greenhouse

Use coding to program a computer chip to take care of your plants for you, even while you're at home!

Lesson 1a: Intro to Greenhouses

Lesson 1a: Intro to Greenhouses

Questions of the day...

- What is a greenhouse?
- What variables affect plant growth?

Note to teacher...

This first lesson (1a) is short such that you have time to set up your interactive notebook, online journal, or whatever method you choose to help students record their answers and data from the project.

You may also choose to complete the Pre-Survey (if applicable) during this time

Add link to survey here

<u>Do Now (Lesson 1a)</u>: 1. What is a greenhouse? 2. What variables affect plant growth?

Class Discussion:

- What variables affect plant growth?
- What can we <u>automate</u> inside a greenhouse to make it "smart"?

Student responses:

Methods of Growing Plants What do you think works better?

Hydroponics: Soil: Growing plants in water Growing plants in dirt VS. Airstone Airpump

Min Height 10 in

Min Width 10 in

Your task... Adopt & Take Care of a Greenhouse!

- You and your team will become the "parents" of a greenhouse through Plant Parenthood
- As a group, give your greenhouse a name & fill out the adoption certificate!

	Certificate of Adoption On Behalf of Plant Parenthood Name of Greenhouse:			
JPLANT				
DADENITU AAD				
S FARENIHUUD	By signing this form, I hereby agree to care for greenhouse to the best of my ability, to help the plants grow big and strong, and lead happy lives.			
(SORRY I CANT MY PLANTS NEED ME.)	Adoptive Parent:			
	(Phinted Full Name) (Signature) (Date)			
	ζ γ			

Exit Ticket (Lesson 1a)

1. What does a greenhouse do?

2. What do plants need in order to survive?

Lesson 1b: Intro to Coding

Lesson 1b: Intro to Coding

Questions of the day...

- What is "coding"?
- Why is coding important?
- What makes someone a good coder (computer programmer)?

Do Now (Lesson 1b):

- 1. What is coding?
- 2. Why is coding important?
- 3. What makes someone a good coder (computer programmer)?

Student responses:

What is Code? Code is the language of computers!

You can program a computer so when it reads "gl.on", it turns the lights on.This is because "gl.on" is the language the computer understands (ie. "code").

It's the INPUT!!

PROOF THAT YOU ARE TRYING

What makes a good programmer (coder)?

IGRES!

For this project, remember...

-Don't give up -Follow directions carefully -Listen well -Pay attention to EVERY detail! spelling, **Capitalization**, colons, **Indenting** (tabs)

MicroPython?! Is it a snake?

<u>MicroPython</u> is a computer program that uses **code to control outside devices**.

Microcontrollers or "MCU" chips can be programmed to control devices (ex. lights or fans) that complete tasks while humans are away.

Try out your coding skills!

Even ONE mistake can make the whole system fail... The next slide shows code written by a student. Can you identify the 7 errors in the student's code?

Remember that EVERYTHING matters!

- spelling
- Capitalization
- commas (,) and spacing
- colons (:)
- indenting (Tab)
- missing lines

print("Light level is BAD. Your Grow Lamp should be ON" light)

Correct Code

← Student Code

Exit Ticket (Lesson 1b)

What is <u>coding</u>?

- 2. What qualities do you <u>already</u> <u>have</u> that will make you a good coder?
- 3. What qualities do you <u>need to</u> <u>work on</u> to become a good coder?

Lesson 1c: Intro to Devices

Do Now

Coding vocabulary

Labeled MCU

Devices overview

Devices on each MCU

Libraries overview

Lesson 1c: Intro to Devices

Questions of the day...

- What devices will be used in the greenhouse?
- What classes/libraries do these devices belong to, and why?

Do Now (Lesson 1c): What would you like to automate (make automatic) within your

greenhouse? Name 3 things.

Student responses:

Creating an Automated "Smart" Greenhouse

Table of Contents

Station Setup

This is what your lab area should look like!

USB Power Hub

Greenhouse

Labeled Group Bag

<u>CODING VOCABULARY</u>

- <u>Library</u> a set of programs that controls an object or does something
 - 3 Libraries: <u>Displays</u>, <u>Actuators</u>, and <u>Sensors</u>
- From tells the microcontroller (MCU) which <u>library</u>
- Import tell the microcontroller (MCU) to get a device
- Port the location on the microcontroller (MCU) where a device will be plugged in (ports 1-6)

4

5

6

Labeled MCU

Table of Contents

Devices for Greenhouse Project

ĵ.	Image	Sensor/Device	
Table of Contents		Relay	
	1 MV	Servo	
	Elline	Temperature/Humidity	
	- Company	Grow Light	
	1º	OLED Screen	
		Light Sensor	
	Π	Moisture Sensor	
	The second se	Button	

Variables you will control...

Variable	Device(s)		Variable	Device(s)
Air Temp.	*Temp & Humidity Sensor		Moisture	*Moisture Sensor
*Temp. &				
Humidity	Humidity Sensor *Servo		Water	*Relay → Pump *Drippers/Hose
	*Relay →			Dhppers/1103e
Air Flow	Propeller Fans → Exhaust Fans		Light	*Light Sensor *Relay → Grow
Communication	n *LED Lights *OLED screen			

Devices on each MCU

The Libraries!

The devices you will be using generally belong to **3 classes** (Libraries)

Do Things (move)

Actuators

Detect/Sense Things

Sensors

Displays Show Things

Devices: Relay (for lights, fans, water pump), Servo, Button

Devices: Light Sensor, Moisture Sensor, Temp. & Humidity Sensor

Devices: LED light, OLED screen
Actuators: "Do things"

Device :	Port (s)	MCU#	What it does
Relay	Pump: 1 Lights: 2 Fans: 2	→ 2 → 2 → 1	A switch that turns things on and off. Used for: fans, pump and lights
Servo	1	1	Will control opening and shutting the roof of your greenhouse
Button	1, 2, 3	N/A	Practice coding one device to influence another (button → LED light)

1-

	Sensors: "Detect thin		
Device :	Port (s)	MCU	What it does
Temp. & Humidity	3	1	Detects Temperature and Humidity Levels as to keep them in a perfect range
Light Sensor	6	2	Detects lux values (amount of light your plants are getting)
Moisture Sensor	4	2	Detects moisture values (how dry or wet your plants soil is)

	Disp	lays:	"Show Things"		
Device :	Port (s)	MCU	What it does		
OLED Screen	6	1, 2	Shows Temperature, Moisture and Humidity Levels within a certain time period		
Grow Lamps	2	2	Shows if the lights are on or off (either giving or not giving your plants heat/sunlight)		
LED Lights	5	1, 2	Shows the conditions of your greenhouse. Example: Green= Good → Plants are happy Red= Bad → Plants are NOT happy!		

Activity Suggestion

- Print out blank versions of the MCU & charts with devices.
- Label the blank copies OR print out the words separately
- Have students time themselves in pairs to see how quickly they can correctly label each MCU/library/device!

Exit Ticket (Lesson 1c)

- 1. What does an MCU do?
- 2. What are the 3 classes of devices?
- 3. Which device do you think is the MOST important to keeping your plants healthy? Why?

Lesson 2a: LED Lights

Do Now

Problem of the Day

Materials

How to use EsPy

Code for LED Light strip

Challenges

Lesson 2a: LED Lights

Image Sensor/Device		Class	Ports
Des Color of	Grow Light	displays	5

Do Now (Lesson 2a): 1. Identify and explain 3 reasons why you might want to put LED lights on your greenhouse

Class Share-Out:

Problem of the day:

How can I determine the general environmental conditions ("happiness") of my greenhouse without plugging in devices & downloading data?

Solution: Program an LED light to display different colors depending on the condition of the greenhouse!

Problem-Solving Process

1

Brainstorm: LED light

- What color might we want the LED light to blink if the greenhouse is <u>too hot?</u>
- What *color* might we want the LED light to blink if the greenhouse has a <u>low</u> <u>moisture level</u>?
- What could the color orange represent in terms of <u>humidity</u>?

General format for adding new device

3)

Two students work on writing the code needed to program the device Two other students work on the device 2) itself (gathering supplies, wiring, attaching to MCU, etc.) Help each other as needed! **TODAY & TOMORROW ONLY...** each pair will code AND use the device

Receiving your group's MCUs

- 1. Each group will receive two blank MCU chips.
- 2. You are to cut a small piece of tape that will fit at the top of each MCU.
- 3. Label them #1 and #2.
- 4. Place #2 in your group's ziplock bag, and attach to your greenhouse.

Ż	Table of Contents	Gather Ma for Lesson 2a:	terials LED light strip
Name & # of Part			Picture of Part
	1 - Wio Link Board (Micro-Controller Unit). This is known as the "MCU"		
	1- Alligator Clip (To attach LED strip to greenhouse)		
	1- Micro-USB Cord		
	1 – LED Light strip (Sometimes called a GrowLight)		

This end plugs into the computer

Connect as follows...

Once connected to the computer, the red light on your MCU #2 should turn on!

Now you are ready to code...

If you see a blue light, <u>reflash</u> your MCU. If no luck, get another MCU and re-label it.

How to use EsPy (the program that runs microPython)

<u>Step 1:</u> Click the "EsPy- Shortcut" icon on your desktop, which will open the program.

How to use EsPy (the program that runs microPython)

<u>Step 2</u>: Go to File \rightarrow New \rightarrow Python

🖳 EsPy 1.0.0.12

File	Edit	View	Device	Tools	Help		
	New				Python	Ctrl+N	
	Open	1	Ctrl+O		HTML		18
	Save		Ctrl+S		Css		
	Save as				Javascript.		
5	Save all	Ctrl+S	Shift+S		JSON		
	Exit				Text Other		

How to use EsPy

(the program that runs microPython)

Step 4: Once inside the folder, name the file based on the device you are using (ex. MCU1-LED light) and press "Save"

How to use EsPy

(the program that runs microPython)

Step 5: Type your code!

(You will have to open another tab or use another computer to view the code while typing)

🚽 EsPy 1.0.0.12

Code for LED Light Strip

How to use EsPy

(the program that runs microPython)

Step 6: Press "Connect" then "Run" (play) to run your code!

EsPy 1.0.0.12 Device Edit View Tools Help File Connect LED light.py Connect from displays import GrowLight gl = GrowLight(1) 2 3 gl.on() Run (play) 5 🛃 EsPy 1.0.0.12 Device File Edit View Tools Help e ei 🥖 🔗 LED light.py Run (Ctrl+R) from displays import GrowLight 1 gl = GrowLight(1) 2 gl.on() 3 4 5

The bottom of the screen provides information. Notice here, the terminal is stating there is an error is in **line 1**. The person forgot to capitalize the "L" in "GrowLight" Terminal Traceback (most recent call last): File "<stdin>", line 1, in <module> ImportError: cannot import name Growlight >>>

Table of Contents

192

193 194

Fix errors & test again

Click "Disconnect", then "Connect" and "Run" again.

🛃 EsPy 1.0.0.12	
File Edit View Device Tools Help	
) 📑 🔚 🖶 (S) 🕐 (X) 🗋 📋 🖉 🤡 (S) 🗟 (N) 🖓 🏹	
LED light.py* × 1 from displays import GrowLight 2 gl = GrowLight(1) 3 gl.on() 4 5 6 7 8 9 10 11	
12 13 14	

Is it working??

If so, your LED strip should look like this!

If it's working, congrats! Try these LED Light Challenges...

Challenges: LED Light

<u>Challenge #1</u>: Replace **gl.on()** with **gl.blink()**. What happened?

Your code should look like this:

-	LED light.py* ×
1	<pre>from displays import GrowLight</pre>
2	gl = GrowLight(1)
3	gl.blink()
4	

Challenges: LED Light

<u>Challenge #2</u>: Insert a color next to gl.blink.

Your code should look like this:

Challenges: LED Light

<u>Challenge #3</u>: Change the numbers in the color interval so that it reflects the code below. What color does this represent?

What about this one?

1	<pre>from displays import GrowLight</pre>
2	gl = GrowLight(1)
3	gl.blink(color=[0,0,255])
4	

Try a combination of numbers 0-255, what colors can you make?? ⁶⁵

Challenges: LED Light

<u>Challenge #4</u>: Add a **times** and **interval** for the blinking. Start with the code below, then change it to play with different options.

Your initial code should look like this:

```
1 from displays import GrowLight
2 gl = GrowLight(1)
3 gl.blink(color=[0,0,255], times=2, interval=.5)
4
```

<u>Challenge #5</u>: Try to have the LED light blink **blue** 5 times, then **red** 5 times, then **green** 5 times. (*Hint*: Copy and paste the last line (gl.blink...) 3 times and change the numbers in each!)

Exit Ticket

 Did you get your LED lights working? If not how come?
 Did you change the LED light colors?

Lesson 2b: Button

Do Now

Problem of the Day

Materials

EsPy file name for Button

Code for Button

Challenges

Lesson 2b: Button

Image	Sensor/Device	Class	Ports
	Button	Actuators	1,2,3

Do Now (Lesson 2b):

1. Write the three lines of code from

memory that are required to turn on the LED strip.

2. What do each of those lines of code mean?

Reviewing Yesterday's Code

- 1 from displays import GrowLight
 2 gl = GrowLight(1)
 3 gl.on()
- 1) Which <u>library</u> is used?
- 2) Which <u>device</u> is used?
- 3) What is the <u>code/nickname</u> for GrowLight (LED strip)?
- 4) What <u>port</u> is the GrowLight (LED strip) plugged in to?

Problem of the day:

How do you turn on your LED light strip without pressing "connect" and "disconnect" on the computer?

Problem-Solving Process

Table of Contents

Brainstorm: Button

- How do you connect the LED lights to the button?
- What do we need to add/change to the code so it includes the button?
- What if we want to press the button to turn it off? How might we reverse the action?

Group Format Suggestion

- 1.) The button activity can be completed in pairs instead of as a full group.
- 2.) One partner can gather the materials and connect the button and LED light to the MCU and computer.
- 3.) The other partner can open to the "Code for Button" slide from the Table of Contents and type the code into a new EsPy file.
- 4.) Test out button & then attempt challenges!

Table of Content	Gather Mat for Lesson 2b:	Gather Materials for Lesson 2b: Button		
	Name & # of Part	Picture of Part		
	1 - Wio Link Board (MCU #1)			
	1- Micro-USB Cord	Ő		
	1 – LED Light strip			
	1- Button			
-	1-4 pin connector wire			

Plug the button into Port 1 and the LED strip into Port 2

Grab a connector wire and attach one end to the button

Plug the other end of the USB into the computer

Table of Contents

Once connected to the computer, the red light on your MCU #2 should turn on!

Now you are ready to code...

If you see a blue light, <u>reflash</u> your MCU. If no luck, get another MCU and re-label it.

EsPy 1.0.0.12

Organize •

Apps

introduction uni

Prior Curriculum

Personal

Screenshots

OneDrive
This PC

Network

UMass Boston A

File name:

Save as type:

> This PC > Desktop > Blue 1A

Name

button

🗟 test

LED light

New folder

V K

button button.py

Open a new EsPy file and save in your class folder as "Button"

X

Q

2

thon File

Python File

.....

Type

Note: The button is NOT being saved permanently to your MCU, so you don't need to write MCU1 or MCU2 as part of the file name!

∧ Hide Folders

<

Cancel

Save

Search Blue 1A

Date modified

6/19/2019 1:02 PM

6/19/2019 11:52 AN

6/19/2019 12:05

v ∂

μ ×

<u>Code</u> for Button

EsPy 1.0.0.12

These lines will show up automatically when you press "Tab"

Make sure that you press "Tab" to indent the line, and DO NOT use the spacebar!!

Not working? Check your terminal for any errors..

Table of Contents

In this example, the indenting is wrong. The student forgot to press "Tab" before **gl.on()**

Is it working?? If so, move on to the challenges!

Button pressed

Button released

Challenges: Button

Challenge #1: Reverse it! Change your code so the LED light is ON when the button is NOT pressed and OFF when the button IS pressed.

Challenge #2: Change your code so the LED light blinks blue when the button is pressed and blinks red when the button is NOT pressed. (*HINT: Remember what you learned in the last lesson! You can go back if you need.*

Challenge #3: Change your code so when you press your button, your light blinks red/blue quickly like a police car for a total of 20 continuous seconds. (*Hint: You will have to copy and paste!*)

Exit Ticket (Lesson 2b)

- 1. What colors would you like to use to represent different conditions in your greenhouse?
- 2. Why are we NOT keeping the button as part of our greenhouse?

Clean Up!

- Unplug the 3 pieces and place them in your group's ziplock bag (along with MCU #2)
- 2. Make sure your ziplock is labeled with your group
 name/number!
- Attach your bag to your
 greenhouse using a magnetic alligator clip.

Challenges

Lesson 3a: Grow Lamps

Images	Sensor/Device	Class	Ports
	Relay	Actuators	1, 2
	Grow Lamps	Displays	

sunlight

Do Now (Lesson 3a):

- 1. Why do plants need sunlight?
- 2. What can we add to our greenhouse to represent
 - sunlight?
- 3. When should they go on or off?

Class Share-out

Problem of the day:

How do we connect and turn on/off our Grow Lamps?

Solution: We can use a Relay (essentially an on/off switch)

Problem-Solving Process

Brainstorm:

- How do we connect the lamps to to our greenhouse?
- How do we turn them on?
- What will the Relay do?
- How can we give our plants light when we are away? timer?

Group Format Suggestion

1.) The Grow Lamp lesson can be completed as a group of 4.

2.) 2 group members will be in charge of gathering materials and putting the devices together.

3.) 2 group members will be in charge of coding

Reminder: The pair coding also must open one computer to these slides so the coder can see the directions/code itself!

Gather Materials for Lesson 3a: Relay & Grow Lamp

Number/Name of Part	Picture of Part	Number/Name of Part	Picture of Part
1- Wio Link Board (MCU).	MCU #2	1- Grow Lamp	
1- Micro-USB Cord (to plug in the MCU)	Q	1- Micro-USB Cord Stripped (wires exposed)	XXXX
1- Relay with 2 red wires		1- Screwdriver	
1- terminal block	S S	1- 4 Pin Wire Connector	0
May need a pair of wire strippers (unlikely)	X		

Setup 1

This is your Lamp Setup!

Grow Lamps

Terminal Block: Where all the wires get connected

Clip to clamp onto base of greenhouse Power Source
Will get
plugged into
your USB
power hub!

Relay!

Assemble your MCU #2 and related wires (USB & 4-pin cable)

Setup 2

Plug in **4-pin wire** connector to Port 2 95

Connecting Setup 1 & 2

Put the 4-pin connector into the Relay

You have now connected your Grow Lamp setup to your MCU set up!

Final Product!

Once connected to the computer, the red light on your MCU #2 should turn on!

Now you are ready to code...

If you see a blue light, <u>reflash</u> your MCU. If no luck, get another MCU and re-label it.

Open EsPy from the desktop

Click this from desktop

For reminders on how to complete each step of the <u>saving process</u>, click **HERE**.

Save new EsPy file your class folder as "mcu2-Grow Lamp"

🖳 Save As			×
	s PC → Desktop → Blue 1A 🛛 🗸 Ō	Search Blue 1A	م
Organize 🔻 New folde	r	: = = = : = = =	- ?
Apps ^ introduction uni Personal Prior Curriculum Screenshots trans_soil UMass Boston A OneDrive This PC	Name button grow lamp LED light mcu1-growlamp mcu2-growlamp test	Date modified 6/19/2019 1:55 PM 6/20/2019 11:35 AM 6/19/2019 2:10 PM 6/20/2019 1:03 PM 6/20/2019 1:03 PM 6/19/2019 12:05 PM	Type Python File Python File Python File Python File Python File
🔿 Network 👻	<		>
File name: mcu2	-growlamp		~
Save as type: Pytho	n files(*.py)		~
∧ Hide Folders		Save	Cancel

<u>Code</u> for Grow Lamp

```
-
   grow lamp.py*
            ×
      from actuators import Relay
 1
 2
      import time
 3
 4
      relaylight = Relay(2)
 5
                                       Type this
 6
      while True:
                                       code into
 7
          relaylight.on()
                                         EsPy
 8
          time.sleep(4)
 9
          relaylight.off()
          time.sleep(4)
10
11
12
13
```


Is it working??

If so, your Greenhouse lights should be ON and look like this:

If it's working, congrats! Try these Challenges...

Challenges: Relay & Grow Lamp

 Change your code so the grow lamp will be on for 3 seconds, then off for 5 seconds, then on for 2 seconds, and then off for 7 seconds.

<u>Hint</u>: Remember you can copy and paste lines of code to have many lines!

2. This challenge involves material you learned yesterday... Can you have the LED light Strip blink green when the relay is on (lights are on) and blink red when the relay is off (lights are off)? Remember to put the LED light strip into Port 1!

Exit Ticket

- 1. Did you get your lights on? If not how come?
- 2. How long will your timer be on?
- 3. How long will your timer be off?
- 4. Why did you choose those times?

Lesson 3b: Light Sensor *OPTIONAL/EXTENSION*

<u>Do Now</u>

Problem of the Day

Materials

EsPy file name for Light Sensor

Code for Light Sensor

Activity Option

Lesson 3b: Light Sensor

Image	Sensor/Device	Class	Ports
	Light Sensor	Sensors	6

Do Now:

1. How would you explain to someone who has never coded before what a WHILE loop is?

2. What is wrong with the following code? Hint: There are 5 errors

Problem of the day: How can I have my Grow Lamps turn on if it is too dark for my plants?

Solution: Use a light sensor to turn lights on when it is too dark and off when it is too bright for my plants!

Problem-Solving Process

Brainstorm: Light Sensor

- How do you connect the Grow Lamps to the Light Sensor?
- What kind of information will the Light Sensor give us?
- How much light does a plant need?

Gathering Materials Lesson 4a: Temperature & Humidity Sensor

Device	Picture
MCU #2	
Two 4-Pin Connectors	00
Black USB cable	
Light Sensor	
I2c Hub	A R R R R

Assembling Light Sensor

1. Attach 4 pin connector cable to light sensor

Assembling Light Sensor

2. Attach other end of 4 pin connector cable to a hub (extension board), then add a 2nd 4 pin connector cable to the end of the hub.

Assembling Light Sensor

3. Insert remaining end of 4 pin connector cable to Port 6 of MCU #2

Once connected to the computer, the red light on your MCU #2 should turn on!

Now you are ready to code...

If you see a blue light, <u>reflash</u> your MCU. If no luck, get another MCU and re-label it.

Open EsPy from the desktop

Click this from desktop

For reminders on how to complete each step of the <u>saving process</u>, click **HERE**.

Save new EsPy file your class folder as "mcu2-lightsensor"

🖳 Save As			\times
	is PC > Desktop > Blue 1A 🛛 🗸 ඊ	Search Blue 1A	Q
Organize 🔻 New folde	r	: = = = : = = =	• 🕐
Apps ^ introduction uni Personal Prior Curriculum Screenshots trans_soil UMass Boston A OneDrive This PC	Name button grow lamp LED light mcu1-growlamp mcu2-growlamp test	Date modified 6/19/2019 1:55 PM 6/20/2019 11:35 AM 6/19/2019 2:10 PM 6/20/2019 1:03 PM 6/20/2019 1:03 PM 6/19/2019 12:05 PM	Type Python File Python File Python File Python File Python File
File name: mcu2 Save as type: Pytho	 lightsensor n files(*.py) 		> ~ ~
∧ Hide Folders		Save	ancel

Code for Light Sensor

Data for Light Sensor

You should start to see light sensor data in your terminal...

Termina	l .
100	
101	<pre>ls = LightSensor(6)</pre>
102	
103	🖃 while True:
104	$l = ls.get_lux()$
105	<pre>print('light value is', 1)</pre>
106	<pre>time.sleep(3)</pre>
107	81.31 E.4
108	light value is 5.8653
109	light value is 5.8653
110	light value is 5.8653
111	light value is 4.91481
112	light value is 4.91481
113	light value is 4.91481
114	light value is 5.8653
115	

Activity Option

- 1. Put the light sensor right under the grow lamps, what happens? Why?
- 2. Start with the light sensor 1m away from the light. Record the lux value.
- 3. Move it 10cm closer and record the lux value.
- 4. Keep going until you are at the lights again. Graph your data.

Exit Ticket (3b)

- 1. How might you want to use the light sensor in your greenhouse?
- 2. What would that code look like?
- 3. What is a potential downside of using the light sensor?

Lesson 4a: Temp/Humidity Sensor

Do Now

Problem of the Day

Temperature/Humidity Notes

Materials & Assembly

EsPy file name for Temp/Humidity Sensor

Code for Temp/Humidity Sensor

Challenges

Exit Ticket

Lesson 4a: Temp/Humidity Sensor

Images	Sensor/Device	Class	Ports
	Temperature/Humidity Propeller Fans	Sensors Actuator	1, 2, 3

Do Now:

- 1. Why should we regulate the temperature and moisture in the greenhouse?
- 2. What might happen when our greenhouse is too hot?
- 3. What is an easy-fix to this

problem?

Student Answers:

Problem of the day:

How do we keep our greenhouse at the perfect temperature and humidity level?

Solution: We detect the temperature and humidity and use the Fans when needed!

What is <u>temperature</u>?

Why is temperature important?

- If temperature is too hot plant will be stressed and may bolt
 - <u>Bolt</u> = produce seeds instead leaves
 - Transpire (sweat) more and will need more water to stay alive
 - Less food!

Greenhouses should be between 75-85 degrees during the day

What is <u>humidity</u>?

Relative Humidity

 Amount of water in the air compared to what air can hold at a certain temperature.

- <u>Examples:</u>

10% Relative Humidity

90% Relative Humidity

- Air with a relative humidity of 50% contains half of the maximum amount of water
- 10% relative humidity means there is very little water in the air and the air could hold much more water.

Why is humidity important?

If humidity is too high...

 Water may condense on leaves and cause disease or fungus to grow on them.

What are good humidity levels?

 According to the University of Massachusetts Agriculture Department greenhouses should be around:
 Becord this chart in your journal!

		o chart in your journal.
Temperature	• (F)	Humidity
50°		83%
61°		89%
68°		91%
86°		95%

It is important to remember that every time you change the temperature, it will change the humidity, and vice versa.

How are temperature and humidity related?

 As the air gets hotter it can hold more water, which results in higher relative humid 70 60 Humidity 50 40 30 20 10 -20 -15 -10 -5 5 10 15 20 25 30 35 40 45 50 55 0

Temperature (Celsius)

Problem-Solving Process

31

Brainstorm:

- How much does temperature and humidity impact plant growth?
- What is the relationship between temperature and humidity?
- What can we use a temperature/humidity sensor for in our greenhouse?

Gathering Materials Lesson 4a: Temperature & Humidity Sensor

Device	Picture
MCU #1	
4-Pin Connector	
Black USB cable	
Temperature & Humidity Sensor	

Assembling Temperature & Humidity Sensor

Put one side of the 4 pin wire connector into the moisture sensor

#3

Assembling Temperature & Humidity Sensor

Put the other end of the 4 pin wire connector in port

MAKE SURE YOU ARE DEALING WITH MCU #1

Assembling Temperature & Humidity Sensor

Plug the black USB cable into MCU #1

Assembling Temperature & Humidity Sensor

Put the Temperature and Humidity Sensor inside the greenhouse and shut the roof.

Then place the MCU on your Greenhouse

Assembling Temperature & Humidity Sensor

the computer

138

Once connected to the computer, the red light on your MCU #1 should turn on!

Now you are ready to code...

If you see a blue light, <u>reflash</u> your MCU. If no luck, get another MCU and re-label it.

Open EsPy from the desktop

Click this from desktop

For reminders on how to complete each step of the <u>saving process</u>, click **HERE**.

Save new EsPy file your class folder as "mcu1-temphumidity"

🖳 Save As			×
	is PC → Desktop → Blue 1A 🛛 🗸 Č	Search Blue 1A	م
Organize 🔻 New folde	er		- ?
Apps introduction uni Personal Prior Curriculum Screenshots Itrans_soil UMass Boston A OneDrive This PC	Name button grow lamp LED light mcu1-growlamp mcu2-growlamp test	Date modified 6/19/2019 1:55 PM 6/20/2019 11:35 AM 6/19/2019 2:10 PM 6/20/2019 1:03 PM 6/20/2019 1:03 PM 6/19/2019 12:05 PM	Type Python File Python File Python File Python File Python File
Network File name: mcu1 Save as type: Pytho	<pre>temphumidity n files(*.py)</pre>		> ~
∧ Hide Folders		Save	Cancel

1

10

Codes to get readings of temperature and humidity

from sensors import TemperatureSensorPro
import time

tempsensor = TemperatureSensorPro(3)

```
while True:
    temp = tempsensor.get_temperature()
    humidity = tempsensor.get_humidity()
    print("temperature is:", temp, "humidity is:", humidity)
    time.sleep(4)
```


Challenges: 4a Temperature & Humidity

- 1. Put a cup of hot water in your Greenhouse.
- 2. Watch what happens to the temperature and humidity readings.
- 3. Graph your findings.

Exit Ticket (4a)

- 1. What is the purpose of a Temperature & Humidity Sensor?
- 2. What happened to the Temperature and Humidity when you put a cup of hot water in your greenhouse? Why did this happen?

Lesson 4b: Propeller Fans

Do Now

Problem of the Day

Materials & Setup

EsPy file name for Temp/Humidity Sensor

Code for Temp/Humidity Sensor

Exit Ticket

Lesson 4b: Propeller Fans

Images	Sensor/Device	Class	Ports
	Propeller Fans (from a Relay)	Actuator	1, 2, 3

Do Now (Lesson 4b): Identify and explain 3 reasons why having <u>fans</u> would be helpful in a greenhouse

Class Share-Out:

Problem of the day: How can we regulate the temperature/humidity in our greenhouse?

Solution: Use propeller fans to circulate the air!

Problem-Solving Process

Brainstorm: Propeller Fans

When should we turn on the propeller fans?

What device will control when the propeller fans turn on?

Where should the two propeller fans be placed to maximize airflow within the greenhouse?

Materials: 4b Propeller Fans

Number/N	ame of Part	Picture of Part	Number/Name of Part	Picture of Part
1- Wio Link	Board (MCU).		1- Temp Sensor	
1- Micro-l plug in	JSB Cord (to the MCU)	Ő,	 Micro-USB Cord Stripped (wires exposed) 	A A
1- Relay wi	th 2 red wires		1- Screwdriver	
1- termin	al block	3 S 2 4	3- 4 Pin Wire Connector	0
May need a pair of wire strippers (unlikely)		1-2 motors with fans (at least 1).		

Black text = **black** wire; Red text = red wire

Connect your Propeller Fan & Relay to your MCU #1

Place the 4 pin wire into the relay

Plug the other end of the 4 pin wire into port 2 of MCU 1

Once connected to the computer, the red light on your MCU #1 should turn on!

Now you are ready to code...

If you see a blue light, <u>reflash</u> your MCU. If no luck, get another MCU and re-label it.

Open EsPy from the desktop

Click this from desktop

For reminders on how to complete each step of the <u>saving process</u>, click **HERE**.

Save new EsPy file your class folder as "MCU1-Propeller Fans"

EsPy 1.0.0.12

🛃 Save As			×
$\leftarrow \rightarrow \land \uparrow$	This PC > Desktop > Blue 1A v (ර Search Blue 1A	Q
Organize 👻 New	folder	823	• 🕐
 Apps introduction u Personal Prior Curriculu Screenshots trans_soil UMass Boston OneDrive 	 Name button grow lamp LED light main mcu1-growlamp mcu2-growlamp test 	Date modified 6/19/2019 1:55 PM 6/20/2019 11:35 AM 6/19/2019 2:10 PM 6/20/2019 2:48 PM 6/20/2019 1:03 PM 6/20/2019 1:03 PM 6/19/2019 12:05 PM	Type Python File Python File Python File Python File Python File Python File
 This PC Network File name: Save as type: 	v < ncu1-propellerfans ython files(*.py)		> ~
∧ Hide Folders		Save (Cancel

```
from actuators import Relay #NEW FOR TODAY
from sensors import TemperatureSensorPro
import time
tempsensor = TemperatureSensorPro(3)
relayfans = Relay(2) #NEW FOR TODAY
```

```
TempHigh = 80 #NEW FOR TODAY
HumidHigh = 60 #NEW FOR TODAY
```

```
while True:
    temp = tempsensor.get_temperature()
    humidity = tempsensor.get_humidity()
```

```
if temp > TempHigh or humidity > HumidHigh: #NEW FOR TODAY
    relayfans.on()
    print("temperature is:", temp, "humidity is:", humidity)
    time.sleep(2)
else:
    relayfans.off()
    print("temperature is:"), temp, "humidity is:", humidity)
    time.sleep(2)
```

Exit Ticket

- Did you get your propeller fans up and running? If not, what went wrong?
- 2. At what temperature will your fans come on? Why did you choose that temperature?

Lesson 4c: Exhaust Fans

Do Now

Problem of the Day

Materials & Setup

EsPy for Exhaust Fans (same as propeller)

Code for Exhaust Fans (same as propeller)

Exit Ticket

Fans

Lesson 4c: Adding Exhaust

Images	Sensor/Device	Class	Ports
	Temperature/Humidity Propeller Fans Exhaust Fans	Sensors Actuator Actuator	1, 2, 3

Do Now (4c Servos):

1. Why is air flow so important in a greenhouse?

2. How do we get the hot or moist air OUT of the greenhouse?

Student Responses:

Problem of the day: How do I expel the hot or humid air from the greenhouse?

Solution: Have Exhaust Fans do it for you!!!

humidity is too HIGH

Problem-Solving Process

Do plants like hot and humid air in their house? Probably not if the temperature OR humid ir out of the greenhouse! What kind of device has been used for such a purpose?

Exhaust fans have been used on computers to effectively cool down really hot CPUs!

They must work for the greenhouse as well!

Brainstorm:

- How can we get the hot or humid air out of the greenhouse?
- Can we wire a fan that sucks the air in and expels it outside the greenhouse?
- How do we wire the exhaust fan to the propeller fan so it happens simultaneously?

Gather your materials...

2- terminal block		* * * *	3- 4 Pin Wire Connector	
2- Black	Exhaust Fans		1-	Contract Con
2 long wires to connect your exhaust fans to your propellor fan		May need some washers to use to attach your magnets		

Wiring Exhaust Fans

You will be adding the exhaust fans to the current propeller fan setup.

No additional code is needed, because your propeller fan code will turn on your exhaust fans too.

You can simply insert the propeller fan wires into the original terminal block of your fans.

1: empty

wires from

Exhaust fans

3: BOTH Red

Exhaust fans

wires from

2: BOTH Black

4: empty 5: Black to get twisted with Black Prop fan

6: Red to get twisted with Red Prop fan

EsPy File name for Exhaust Fans

- You do not need to save a new file for the exhaust fans, since they are wired into the same setup as your propeller fans.
- Just open your propeller fan code (see next slide) and press play, everything should work together.

1

2

3

4 5

6

7 8

9

10

12

13 14 15

16

17 18

19

20

21

22

Codes (No change from propeller fans):

print("temperature is:"), temp, "humidity is:", humidity)

```
from actuators import Relay
from sensors import TemperatureSensorPro
import time
tempsensor = TemperatureSensorPro(3)
relayfans = Relay(2)
TempHigh = 80
HumidHigh = 60
while True:
    temp = tempsensor.get temperature()
    humidity = tempsensor.get humidity()
    if temp > TempHigh or humidity > HumidHigh:
        relayfans.on()
        print("temperature is:", temp, "humidity is:", humidity)
        time.sleep(2)
    else:
        relayfans.off()
```

time.sleep(2)

Exit Ticket (4c exhaust fans)

- 1. Were you able to get your exhaust fans connected to your propeller fans? If not how come?
- 2. At what temperature and humidity will your propeller fan and exhaust fan come on? Why did you choose that temperature/humidity?

Lesson 4d: Servos

Do Now

Problem of the Day

Materials & Setup

EsPy file for Servos

Code for Servos

Exit Ticket

Lesson 4d: Servos

Image	Sensor/Device	Class	Ports
	Servo	Actuators	1, 2, 3

Do Now (4d Servos):

- 1. What is the purpose of an exhaust fan?
- 2. Why is it important to let hot air or humid air out of the greenhouse?

Student Responses:

Problem of the day: What is another way to let hot or humid air out of the greenhouse without having to use fans?

Solution: Make the roof crack open when it's time to let hot air and humidity out by adding a **Servo**

Problem-Solving Process

Brainstorm:

- How do we open the roof just a little bit?
- How will we close the roof once the "bad" air is out?
- How do we program it to do this based off the temperature and humidity sensors reading?
- How do you wire and connect the servo?

Gather your Materials:

sensor)

Number/Name of Part	Picture of Part	Number/Name of Part	Picture of Part
1- Wio Link Board (MCU).		1- Temp Sensor	
 Micro-USB Cord (to plug in the MCU) 	Q	1- Shelf for servo (2 if using 2 servos)	
1- Relay with 2 red wires		 Terminal block (if using 2 servos for your greenhouse) 	
1- Tape		1- Pin Wire Connector (for temp	0

Installing your Servo to MCU 1

Plug the Servo into port 1 of MCU 1

Installing your Servo to MCU 1

Put the Servo on the wooden block with double sided tape

Installing your Servo to MCU 1

Place the Servo on the top of the greenhouse like this

Installing your Servo to MCU 1

Close roof

Installing Your Servo

This end of USB cord plugs into the computer //

Once connected to the computer, the red light on your MCU #1 should turn on!

Now you are ready to code...

If you see a blue light, <u>reflash</u> your MCU. If no luck, get another MCU and re-label it.

Open EsPy from the desktop

Click this from desktop

EsPy.exe -

Shortcut

For reminders on how to complete each step of the <u>saving process</u>, click **HERE**.


```
from actuators import Relay
                                                     Table of Contents
from actuators import Servo #NEW FOR TODAY
from sensors import TemperatureSensorPro
import time
tempsensor = TemperatureSensorPro(3)
relayfans = Relay(2)
servo = Servo(1, position=0) #NEW FOR TODAY
TempHigh = 80
                                    Code for Servo
HumidHigh = 60
while True:
    temp = tempsensor.get_temperature()
    humidity = tempsensor.get humidity()
    if temp > TempHigh or humidity > HumidHigh:
        relayfans.on()
        servo.set position(90) #NEW FOR TODAY
        print("temperature is:", temp, "humidity is:", humidity)
        time.sleep(2)
    else:
        relayfans.off()
        servo.set position(0) #NEW FOR TODAY
        print("temperature is:"), temp, "humidity is:", humidity)
        time.sleep(2)
```

1

2

3

4

56

7

8

9

10

11

12

14

15

16 17

18

19 20

21

22

23

24

25

26

Save updated EsPy file your class folder as "MCU1-Servo"

ESPY 1.0.0.12				
💀 Save As				\times
$\leftarrow \rightarrow \ \cdot \ \uparrow$ 🔚 \bullet Thi	s PC > Desktop > Blue 1A	√ Ō	Search Blue 1A	Q
Organize 👻 New folde	r			• ?
 Apps introduction uni Personal Prior Curriculum Screenshots 	Name button grow lamp LED light main		Date modified 6/19/2019 1:55 PM 6/20/2019 11:35 AM 6/19/2019 2:10 PM 6/20/2019 2:48 PM	Type Python File Python File Python File
 trans_soil UMass Boston A OneDrive 	mcu1-growlamp mcu2-growlamp test		6/20/2019 1:03 PM 6/20/2019 1:03 PM 6/19/2019 12:05 PM	Python File Python File Python File
				, , ,
Save as type: Pythor	n files(*.py)			~
A Hide Folders			Save	Cancel

186

Servo: What you should see!

When Servo is at a vertical 90 degree angle, the roof will be

open

Servo: What you should see!

When Servo is at a Horizontal 180 degree angle, the roof will be closed

Exit Ticket (4d servo)

- 1. Did you get you Servo up and running? If not how come?
- 2. At what angle and temperature is your roof cracked open?
- 3. At what angle and temperature is your roof totally shut?

Lesson 5: Moisture Sensor

Do Now

Problem of the Day

Materials & Setup

EsPy file for Servos

Code for Servos

Exit Ticket

Lesson 5: Moisture Sensor

Image	Sensor/Device	Class	Ports
	Moisture Sensor	Sensors	4 (only)

Do Now (5 Moisture Sensor):

- How do you plan to water your soil plants when you aren't around to do it?
- 2. How do you know how often to water your plants?
- 3. How can you tell when the soil is too dry?

Problem of the day: How to automatically water plants when the soil is too dry!

Solution: Install a moisture sensor and automated drip system!!

Problem-Solving Process

Plant need a certain amount of water access to survive We can install a sensor to track the moisture level of soil. The moisture sensor can be coded to turn on the pump/drip system when the water levels are low

You may not always be around to continuously water your plants We can install a water pump with a drip system in the soil Now your plants can be happily watered without you present!

Brainstorm:

- Where do we put the moisture sensor?
- How do we instal the drip system?
- How do we know what a good moisture level is?
- How do we connect the pump and sensor to the MCU to code it?

Number/Name of Part	Picture of Part	Number/Name of Part	Picture of Part	Table of Contents
1- Wio Link Board (MCU).		1- Water Pump		Μ
1- Micro- USB Cord (to plug in the MCU)		1- Micro-USB Cord Stripped (wires exposed)	A de la	A T
1- Relay with 2 red wires		1- Screwdriver		E
1- terminal block		1 Four Pin Wire Connector		R
May need a pair of wire strippers (unlikely)		1 –Moisture sensor		
1 water pump with stripped wires		Tubing (about 8 inches) with 2-3 T connectors and 3-4 drip connectors		A L S
1 container for your water		1 - LED strip		196

Moisture Sensor Setup

Attach the 4 pin connector wire to the moisture sensor, and plug in to **port 4** on MCU #2. Put the sensor into the dirt, keeping the blue above the ground.

Pump Setup

Just like for the fans/lights, take a USB cable, the water pump, and a relay, and wire into a terminal block like this.

Connecting pump to MCU

Relay for water pump

(Use a 4-pin connector to connect relay to MCU)

#2 Moisture sensor ← Connect black USB here to the computer 199

Open EsPy from the desktop

Click this from desktop

EsPy.exe -

Shortcut

For reminders on how to complete each step of the <u>saving process</u>, click **HERE**.


```
1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
```

```
from actuators import Relay
  from sensors import MoistureSensor #NEW FOR TODAY
  from displays import GrowLight
  import time
  MoistHigh = 500 #NEW FOR TODAY
  MoistLow = 300 #NEW FOR TODAY
  ms = MoistureSensor(4) #NEW FOR TODAY
  relaywater = Relay(1) #NEW FOR TODAY
  relaylight = Relay(2)
  gl = GrowLight(5)
 while True: #NEW FOR TODAY
-
      m = ms.get moisture() #NEW FOR TODAY
      relaylight.on()
      time.sleep(4)
      relaylight.off()
      time.sleep(4)
      if m > MoistHigh: #NEW FOR TODAY
          relaywater.off()
          gl.blink(color=[0,0,255])
          print("Moisture Level is HIGH", m)
          time.sleep(2)
      elif MoistLow < m < MoistHigh: #NEW FOR TODAY
          relaywater.on()
          gl.blink(color=[0,255,0])
          print("Moisture Level is GOOD", m)
          time.sleep(2)
      else: #NEW FOR TODAY
          relaywater.off()
          gl.blink(color=[255,0,0])
          print("Moisture Level is LOW", m)
          time.sleep(2)
```

Code for water pump (MCU 2) + LED strip

Save in your folder as: "waterpump-mcu2"

Save new EsPy file your class folder as "MCU2-Moisture"

EsPy 1.0.0.12 Save As X > This PC > Desktop > Blue 1A Search Blue 1A v 0 م 822 **•** Organize • New folder 2 Apps Date modified Name Type introduction uni button 6/19/2019 1:55 PM Python File Personal grow lamp Python File 6/20/2019 11:35 AM 🛃 LED light **Prior Curriculum** 6/19/2019 2:10 PM Python File main 6/20/2019 2:48 PM Python File Screenshots mcu1-growlamp Python File 6/20/2019 1:03 PM atrans_soil mcu2-growlamp Python File 6/20/2019 1:03 PM UMass Boston A 🗟 test 6/19/2019 12:05 PM Python File OneDrive This PC v < Network > File name: V mcu2-moisture Save as type: Python files(*.py) V Save Cancel

202

Exit Ticket

(5 moisture sensor)

- 1. What is one problem that could arise with your moisture sensor?
- 2. Why do you think there is a minimum moisture level for the sensor (instead of it turning on when it's below a certain number)?

Reference Section

For quick help when you need it!

- How to open & save an EsPy file
- How to upload a file as "main"
- How to reflash your MCU
- <u>Wiring setups</u>

How to Upload a File as "Main"

Required to save the code to the MCU, so it can be unplugged from the computer (& plugged into another power source) and still run the code.

How to Upload a File as "Main" After your code is saved under its usual name ex. "MCU2-growlamp", you can go to File → Save as...

🖶 EsPy 1.0.0.12

How to Upload a File as "Main" 2. Double click on your group folder. Type "main" as the new file name.

Table of Contents

EsPy 1.0.0.12 Save As X This PC > Desktop > Blue 1A Search Blue 1A > م V 0 Organize • 8== **•** 2 New folder Apps Date modified Name Type introduction uni button 6/19/2019 1:55 PM Python File Personal P grow lamp 0 Python File 6/20/2019 11:35 AM 尾 LED light Python File **Prior Curriculum** 6/19/2019 2:10 PM mcu1-growlamp Python File 6/20/2019 1:03 PM Screenshots mcu2-growlamp Python File 6/20/2019 1:03 PM atrans soil test 6/19/2019 12:05 PM Python File UMass Boston A OneDrive This PC Network > File name: main V Save as type: Python files(*.py) V Save Cancel Hide Folders

207

How to Upload a File as "Main" 2b. If it tells you that the file already exists, and ask if you want to replace it, click "Yes"

How to Upload a File as "Main"

3. Click "Connect"

🛃 EsPy 1.0.0.12 Device File Edit View Tools Help main.py × from actuators import Connect 1 2 import time 3 4 relaylight = Relay(2) 5 6 while True: 7 relaylight.on() time.sleep(4) 8 9 relaylight.off() 10 time.sleep(4) 11 12 13 14 15

How to Upload a File as "Main" 3. Instead of "Run," click "Upload"

How to Upload a File as "Main" 4. Now unplug your MCU's black cable from the computer, and plug it into your USB power hub to see if your upload worked! (Your greenhouse should turn back on if the upload was successful)

Unplug MCU from computer

Plug in to USB power hub!

How to Re-Flash an MCU

Required when a file has been saved as "main" in order to test new codes.

				~	Make sure	the selected port is closed	1
python.exe	C:\Users\bcga	t\AppData\L	ocal\Programs\Pyti	non\Python36	-32 python.exe		
esptool.py							
	Default location	: YourPython	\Lib\site-packages	vesptool.py			
frimware.bin							
Device	Wio Link			~		Edit your own list!	
Parameters	O SPORT & S	DAUDDATE	wte fash in do i	s detect 0x00	00 "\$FIRMWARE"		-
							_

How to Re-Flash an MCU 1. Make sure your MCU is plugged into the computer, and an EsPy window is open.

$\frac{How \ to \ Re-Flash \ an \ MCU}{2. \ Click \ Device} \rightarrow EspTool...$

How to Re-Flash an MCU 3. Click "Flash ID"

ptool	tool	
Settings		
Serial Port	COM3 V Baud Rate 460800 V Ake sure the selected port is closed	!
python.exe	C:\Users\bcgat\AppData\Local\Programs\Python\Python36-32\python.exe	
esptool.py		
	Default location: YourPython\Lib\site-packages\esptool.py	_
frimware.bin		
Device	Wio Link ~ (i) Edit your own list!	
Parameters	p \$PORT & \$BAUDRATE write_flash fm dio fs detect 0x0000 "\$FIRMWARE"	
MAC	Flash ID Chip ID 1. Erase 2. Write	
https://githu	b.com/sspressif/esptool	

How to Re-Flash an MCU

4. Click "1. Erase..." and wait 10 seconds

ettings	
Serial Port	COM3 V Baud Rate 460800 V Ake sure the selected port is closer
python.exe	C:\Users\bcgat\AppData\Local\Programs\Python\Python36-32\python.exe
esptool.py	Default Inoction: YourPuthon \ Lib\eite.packages\eentool.pv
frimware.bin	
Device	Wio Link v Edit your own list!
Parameters	a SPORT & SRALIDRATE write flash fm dia fs detect (x0000 "SEIRMWARE"
MAC	Rash ID Chip ID 1. Erase 2. Write
Table of Contents

How to Re-Flash an MCU 4. Click "2. Write..." and wait 10 seconds

esptool X esptool Settings COM3 Baud Rate 460800 Make sure the selected port is closed! Serial Port v python.exe C:\Users\bcgat\AppData\Local\Programs\Python\Python36-32\python.exe esptool.py Default location: YourPython\Lib\site-packages\esptool.py frimware.bin 1 Edit your own list! Device Wio Link V -p \$PORT -b \$BAUDRATE write_flash -fm dio -fs detect 0x0000 "\$FIRMWARE" Parameters 2. Write... MAC Flash ID Chip ID 1. Erase https://github.com/espressif/esptool OK Cancel http://micropython.org/download#esp8266

Table of Contents

How to Re-Flash an MCU 5. Click "Ok" and you're all set!

ptool	
👌 esp	tool
Settings	
Serial Port	COM3 V Baud Rate 460800 V Ake sure the selected port is closed!
python.exe	C:\Users\bcgat\AppData\Local\Programs\Python\Python36-32\python.exe
esptool.py	
	Default location: YourPython\Lib\site-packages\esptool.py
frimware.bin	
Device	Wio Link ~ i Edit your own list!
Parameters	o \$PORT -b \$BAUDRATE write flash fm dio fs detect 0x0000 "\$FIRMWARE"

Wiring Setups

Images of final setups after proper wiring!

- Terminal block labeling
- Grow Lamp wiring setup
- Propeller Fan wiring setup
- Exhaust Fan wiring setup

A terminal block provides a way to securely connect two wires.

The wire in location 1 is now connected with the wires in location 4.

Make sure the screw is pressing on the wire, not the plastic.

Terminal Block

The arrows \iff represent which wires are now connected through a circuit

Wiring the Grow Lamps

1: USB Power

Table of Contents

2: USB Power

3: Lamp

4: Lamp (black and white twisted together)

5: Relay

6: Relay

Black text = **black** wire; Red text = red wire

1: empty

wires from

Exhaust fans

3: BOTH Red

Exhaust fans

wires from

2: BOTH Black

4: empty 5: Black to get twisted with Black Prop fan

6: Red to get twisted with Red Prop fan **Table of Contents**

Wiring Propeller Fan and Exhaust Fans

2: USB Power

3: Prop fan

4: Prop fan 5: Relay 6: Relay

Troubleshooting

Something not working? Try these things... *(in this order!)*

- 1) Check your code for any errors (capitalization, indents, etc.)
- 2) Check to make sure everything is plugged in!
- 3) Unplug and replug in the MCU.
- 4) Check your wiring to make sure all wires are indeed connected and not crossing.
- 5) Press disconnect and run again.
- 6) Re-flash your MCU then try again.
- 7) Ask your partners for help!
- 8) Then finally... Ask your teacher. :)