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Discovering Radians Activity

Supplies:

* Pre-cut circle from construction paper, or a paper plate
« String or heavy thread

* Ruler and protractor -
* Scissors \

Steps:

1. Using the string, measure the circumference of the circle (or paper plate). Record this length.

Circumference =

2. Fold the circle (or paper plate) in half. Crease the fold line so that it can be clearly seen.
3. Fold the circle again into quarters. Crease the fold lines.

4. Open the circle. Using the ruler, draw line segments along the fold lines forming four
quadrants. Label the points on the edge of the circle that correspond to 0°, 90°, 180° and 270°.

5. The folding process has located the center of the circle. Use your string to measure the radius
of the circle. Cut the string to this length. Record this length.

Radius =

6. Hold one end of the radius length string at the edge of the circle at 0°. Wrap the string around
the edge of the circle and mark its ending location. Connect this point to the center of the circle.

7. Using your protractor, find the number of degrees in the central angle formed from 0° to the
segment you drew in step 6. In terms of radians, this angle has a measure of one radian.
Record this answer.

1 Radian =

8. Using your radius length string, continue to wrap the string around the edge of the circle
marking its ending locations. Record the number of radian angles that will fit in the circle.

How many radian angles are in your circle?

9. Ponder:
If the central angle has a radian measure of 2n, what is the number of degrees in the angle?

2w radians =
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Conversion between degrees and radian

To convert an angle measured in degrees to radians, multiply by %[-]

To convert an angle measured in radians to degrees, multiply by @.
L 8

For example:

Ex 1) 225°= (radians)

a. To convert to radians you should multiply by
b. You should only focus on and write & after the fraction is reduced.

C. =

d. The answer is

Ex2) —= (degrees)

a. To covert to degrees you should multiply by
b. Since the n’s cancel each other, we should only focus on the

C. =

d. The answer is

Ex 3) An angle representing one complete revolution of the unit circle measures 2z

radians, formerly °,

1. Change the following radians to 2. Change the following degrees to
degrees if 2 7=360°, radians if 360°= 2 r,
a)r = a) 270° =

o =
b) 7 _ b) 60
2
c) 2= 150° =
4 ¢) 150° =
d) -
4 d)30° =
e) & =
6 e) 240° =
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Work with partners to find the angles in degrees and radians.

1. 2 m 3 A
W N |
Degree Radian Degree Radian Degree Radian

4. A 5. 6.
v

Degree Radian Degree Radian Degree { Radian
7. A 8. 9.

A

v EE

Degree Radian Degree Radian Degree ¥ Radian
10. 11. 12.

A
Degree Radian Degree Radian Degree v Radian
13. l 14. 4 15. A

v
Degree Radian Degree Radian Degree Radian

Page 4




Page 5



Applications of Trigonometric Functions

1. The root system for some native Caribbean plants requires 5 m? of land area to collect the required
amount of nutrients.
a. Ifthis land area is circular, what is the area?
b. Ifthis land is a 35° sector of a circle between two rocks, what is the radius?

2. The equation P = 20 sin(2xt) + 100 models the blood pressure, P, where t represents time in seconds.
a. Find the blood pressure after 15 seconds.
b. What are the maximum and minimum blood pressures?

3. The amount of nutrients in plants depends on the amount of sunlight they receive. The amount of
o . : . 1
sunlight in a certain region can be modeled by the function 2 =15cos (—d ) , where /4 represents the

hours of sunlight, and d is the day of the year. Use the equation to find how many hours of sunlight
there are on February 10, the 42nd day of the year.

4. At Mauna Loa, Hawaii, atmospheric Carbon Dioxide levels in parts per million (ppm) have been
measured regularly since 1958. The function defined by L(x)=.022x" +.55x+316+3.5sin(27x) can

be used to model levels, where x is in years and  x = 0 corresponds to 1960.
a. Calculate the Carbon Dioxide levels in 1970.
b. Calculate the Carbon Dioxide levels in 2017.
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Introduction to Trigonometric Functions and the Unit Circle

1) Find the angle of smallest possible positive measure coterminal with the given angle: -172°
2) Find the angle of smallest possible positive measure coterminal with the given angle: 438°

3) Suppose that O is in standard position and the given point is on the terminal side of ©. Give the exact value
of the indicated trig function for 0: (6, 8); Find csc 6.

4) Convert 330° to radians. Leave answer as a multiple of .
5) Convertt 0.2521 to degrees. Give answer using decimal degrees to the nearest hundredth. Use 3.1416 for .
6) Find the exact value: sin(-180°)

7) Find the exact value: sec270°

8) Find the exact value: cot90° + 2 cos 180° + 6 sec? 360°

9) Find the exact value: cos 30°

10) Find the exact value: tan —27‘(
. 4m
11) Find the exact value: cscT

12) Find the length of an arc intercepted by a central angle 0 = % radians in a circle of radius r = 38.81 ft; . Round

your answer to 1 decimal place.

13) Assume that the cities lie on the same north-south line and that the radius of the earth is 6400 km. Find the
latitude of Spokane, WA if Spokane and Jordan Valley, OR, 43.15° N, are 486 km apart.

14) Find the area of a sector of a circle having radius r = 15.0 ft, and central angle 0 = 2?7-( radians. Express the

answer to the nearest tenth

15) Each tire of an automobile has a radius of 2 feet. How many revolutions per minute (rpm) does a tire make
when the automobile is traveling at a speed of 79 feet per sec? Round your answer to the nearest tenth.

16) Find sec 0 if cos 0 :% and sin 0 > 0.
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17) Find cot O if csc 0 = ‘637 and 0 is in quadrant L.

18) Find cot 6.

7
25" 25

19) Find the exact value of x in the figure.

34

45

20) Find the exact value of x in the figure.

38

45 N
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21) Find a formula for the area of the figure in terms of s.

[u]
B0

3I:|D |_

22) Find h as indicated in the figure. Round your answer to the hundredths place.

25.3° 58.4°

— 147 —

23) An airplane travels at 160 km/h for 4 hr in a direction of 306° from St. Louis. At the end of this time, how far
west of St. Louis is the plane (to the nearest kilometer)?

24) The angle of elevation from a point on the ground to the top of a tower is 37.87°. The angle of elevation from a
point 106 feet farther back from the tower is 24.15°. Find the height of the tower. Round your answer to the
hundredths place.
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Answer Key

1) 188°
2) 78°

5
3) 4
117

6
5) 14.44°
6) 0
7) Undefined
8) 4

NE}
N5

10) %

11 ——2’;/5

4)

12) 40.6 ft
13) 47.50 °N

14) 235.6 ft2
15) 377.2 rpm
16) 4

1
17) —
)6

7
18) - —
) 24

19) 174/3
20) —76;/6

21) % s2

22) 97.98 ft
23) 518 km
24) 112.26 ft
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Graphing Trigonometric Functions

For textbook reference you can use the free opnestax Precalculus text: https://openstax.org/details/books/precalculus
Sections 6.1 and 6.2

1) Match the function with its graph.

1)y=sin3x 2)y=3cosX

3)y=3sinx 4)y=cos 3x

A)

© 3

B)
- 3]

ALAR AN LA
SRV AT SRR RVRTATS

C)

2) Give the amplitude: y = -2 €c0S =X

3) Give the period: y = cos 5x

4) Find the phase shift of the function. y=-3 + 2 sin [3x - E]

1 .
5) Graph the function over a one-period interval: y = 4 + — sin (2X - «r)

D)

6

3

2

3

J

1 A
6) Graph the function over a one-period interval. y =— + cos [ZX -—

Page 11



7) The population size of most insects is dependent on the temperature of their habitats. The temperature in Fairbanks is

. 12 . . .
approximated by T(x) =37 sin [3—(?5(x - 101)} + 25, where T(x) is the temperature on day X, with x = 1 corresponding to

Jan. 1 and x = 365 corresponding to Dec. 31. Estimate the temperature on day 10.

4 1
8) Graph the function.: y = 5 tan [EX - %]

. 4 1 =
9) Graph the function. y=- 5 cot X%

10) Graph the function. Yy =csc [X - %]

11) Graph the function. y =2+ 4 sec [x + %]

12) The average person’s blood pressure is modeled by the function f(t) = 20 sin(160xt) + 100, where f(t) represents the
blood pressure at time t, measured in minutes.

a) Graph the function.

b) Find the highest and lowest values for the average blood pressure and the time at which they occur.

13) Circadian rhythms are approximately 24-hour internally controlled biological changes that occur in the absence of
environmental cues- although they can be altered by the environment. The first example that might pop in your mind when
you hear circadian rhythms is the sleep-wake cycle. Other examples include daily fluctuations in fluctuations in body
temperature, hormones, behavior, and heart rate. Individual neurons in the suprachiasmatic nucleus, a cluster of cells in the
region of the brain called the hypothalamus, generates this "biological clock™ in mammals. But you don't need to have a
brain to have a biological clock. Circadian rhythms are found in a wide variety of organisms- from single-celled yeast to
plants.

For this module, we will consider a hypothetical example. Suppose a particular species exhibits daily regular
fluctuations in body temperature that can be approximated by the equation,

T(t) = 36.8 - 1.3sin (%(t +2))

where T represents temperature in°C, t represents time (in hours), and t = 0 corresponds to 12 o'clock midnight (12:00 am)

a) Find tte period of the function. Does the period make sense? Why?
b) What tiem of the day, does the body temperature reach the maximum? What is the temperature at that time?
¢) Approximate the body temperature at 10 am.
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Answer Key
Testname: GRAPHING TRIG FUNCTIONS

1) 1B, 2D, 3C, 4A
2) 2

2n
3) =

4) 118 units to the right

5)
¥
5--
4'\/_/_(_\
3--
2--
1--
e
4 2 4
6)
y
2--
1--
P N A
3 3 3
14
7y -12°
8)
34y
X
T T
34
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Answer Key
Testname: GRAPHING TRIG FUNCTIONS

9)
34y
s
34
10)
34y
X
T T
12)
3--},.
T _lTE TE |x
g ;3 o
AR VA
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Answer Key
Testname: GRAPHING TRIG FUNCTIONS

12)

13)
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Inverse Trigonometric Functions

For textbook reference you can use the free opnestax Precalculus text: https://openstax.org/details/books/precalculus
Section 6.3

1) Find the exact value of the real numbery. y=cos-1 [%]

2) Find the exact value of the real numbery. y =arctan (1)

3) Find the exact value of the real numbery. y=sin-1(0.5)

4) Graph: y = arccsc %x

Evaluate the expression.
3\

5) cos [arcsin 1

4

J

6) arccos[cos %]

7) sin (arctan 2)

Write the following as an algebraic expression in u, u > 0.
8) cos(arcsin u)

9) tan [cos-l %]

10) cos(arctan u)

11) sin [arctan %]

12) True or false? The statement cos(cos~1 x) = x for all real numbers in the interval 0 <x <.
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13) True or false? The statement tan-1(tan x) = x for all real numbers in the interval ~co< X < =,

14) A crystal is an array of atoms that forms atomic layers known as atomic planes. When an x-ray is passed through a crystal,
the x-ray beam is diffracted according the crystal's atomic structure. Using a technique called x-ray crystallography, one can
construct the three dimensional atomic structure based upon the diffraction pattern.
X-ray crystallography has been used to uncover the atomic structure of thousands of macromolecules ranging from vitamins
to protein complexes. X-ray crystallography was a critical technique in many discoveries that were honored with the Nobel Prize.
Perhaps the most famous structure revealed by x-ray crystallography is the double helical structure of DNA.
The structure of a crystal can be experimentally determined by Bragg's equation, nA =2d sinf

where A is the wavelength of x-rays, d is the distance between atomic planes, 6 is the angle of reflection (in degrees), and
n is a positive integer.

a) Assume that for a given crystal n=1, find the angle of reflection, if the wavelength adn teh distance are equal.
b) Assume that n=2, and the distance is three times the wavelength, use your calculator to approximate the angle.

15) A 5.8-ft fence is 12.052 ft away from a plant in the direction of the sun. It is observed that the shadow of the
fence extends exactly to the bottom of the plant. (See drawing) Find 6, the angle of elevation of the sun at that
time. Round the measure of the angle to the nearest tenth of a degree.

¥ B A
|.=—_r— 12.052 ft ﬁl
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Answer Key
Testname: INVERSE TRIG FUNCTIONS

noe
ola ®la &3

w
~

N
p—

G
T

w:n\\s\x;-z 2 4 6 8 10 %

i

6) %
25
5
1
9
u

7) 25
8) A/1- u2
2
9)—u“

Ju2
10) 2++1l

u

1) uJu2 + 2
u2+2

12) True

13) False

14)

15) 0 =25.7°
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Graphing Trigonometric Functions and Inverse Trigonometric Functions

For textbook reference you can use the free opnestax Precalculus text: https://openstax.org/details/books/precalculus
Chapter 6

Graph the function.
\
T
=si +—
1) y=sin [x 7

J

\

. T
2)y=2 sm[x-z
J

2 T
3) y=3 cos[x +?]
4) y =3 + sin(2x-m)

1 2n
5)y=7+cos ZX-T

1
6)y= ?tan 2x

10)y=2+4sec[x+%]

11) y=sin"l x

12) A generator produces an alternating current according to the equation I = 80 sin 106xnt, where t is time in seconds and I is
the current in amperes. What is the smallest time t such that I = 40?

3
13) Find the exact value of the real number y. y = arcsin [g}

1
14) Find the exact value of the real numbery. cos [arcsin Z]
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15) Write the following as an algebraic expression in u, u>0. tan [cos‘1 %]
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Answer Key

Testname: CHAPTER 6 REVIEW

1)

2)

3)

4)

5)

6)

¥
54
4+
3+
24+
1+

n T 3n - Sn 3n Tnx

4 2 4 4 2 4
¥
24+
1+

n ﬁ\/n o x

3 3 3

-1+
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Answer Key

7)
34y
34
8)
34y
9)

10)
. 3-
T T _I_TI: T
o2
\ . . 3-
11)
-
g
2
il
2
-7
12 !
) 36 sec
T
13) 3
NiE
14) ~—
9-u2
15)
u
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Trigonometric Identities

For textbook reference you can use the free opnestax Precalculus text: https://openstax.org/details/books/precalculus
Sections 7.1 and 7.2

Use the fundamental identities to simplify the expression.

+sec O cos0 1)

cot20
2) sin20 + tan26 + cos20 2)
3) cos x (csc X - sec X) - cot X 3)

Verify that each equation is an identity.
4) tan x(csc x - sin X) = cos X 4)

secO-1_ tan O

Y Tan0 sec0+1 %)
6) (secax - tan ax)(seca+tan ) = 1 6)
7) cscs-sins=cosscots 7)
1+sina
ttan)? =%
8) (sec a + tan ) 1 sina 8)
Use Identities to find the exact value.
9) cos 165° 9)
T
10) cos [E] 10)
Find the exact value of the expression using the provided information.
11) Find cos(s - t) given thatcos s = - % with s in quadrant Ill, and cos t = - % with tin 11)
quadrant I1I.
Find the exact value by using a sum or difference identity.
12) tan 75° 12)
13) sin 15° 13)
Use a sum or difference identity to find the exact value.
14) sin In oS = - cos I sin = 14)

24 8 24 8
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Answer Key
Testname: TRIG IDENTITIES

1) sec20
2) sec20
3) -1
. _ . _sinx 1 sinx . 1 sin2x_1—sin2x_coszx_
4) tan x(csc X - sin X) =tan X - cSCX - tan X - sin X = —_- -sinx = - = = =
COSX SinX €Oos X COSX  COS X COoS X COoS X

COS X

5)sece—l_sec@—l_sece+l_ sec20-1 tanZ 0 _ tano©
tan 6 tan®6 secO+1 tanO(secO+1) tanO(secO6+1) secO+1

6) (sec a - tan a)(sec a + tan ) = sec2a - tan2a = 1

. 1 . 1-sin2s _ cos?s coS S
7)cscs-sins=——-sins= - == =C0SS - — =cosscots
sins sins sins sins

1 +23in0(+sin20( _1+23in0(+sin20a:(1+sino¢)2 _

8) (sec a + tan a)2 =sec2a + 2 sec o tan o + tanla = =
cos?a cos?a  cosla cos2a 1 -sina

(L+sina)?  _1+sina
(1-sina)(l+sina) 1-sina

9) _'\/64_ '\/E
10) 6+ 42 . V2
3+44/3
1) 5

12) /3 +2
13)—\/6'“/E

4

1
14) —
)2
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Trigonometric Equations

For textbook reference and videos you can use section 7.5 of the free openstax Precalculus text:
https://openstax.org/details/books/precalculus

To access the section and videos,you can use use:
https://cnx.org/contents/ VPq4foj@11.14:aeVxcRIM@12/7-5-Solving-Trigonometric-Equations

Solve the equation for the interval [0, 27).
1) cos2x +2 cosx +1=0

2) 2 sin2x = sin x
3) cos x = sin x
4) sin2x - cos2x = 0

Determine the solution set of each equation in radians (for x) or degrees (for 0) to the nearest tenth as appropriate.

5)25in2x+sinx:1

6) 4 tan O 1

5-tan2 0

Solve the equation for solutions in the interval [0, 2 ).

A3
7) sin 4x =——
) sin 4x >

1
8) si ==
) sin x cos X >

9) sin 2x + sinx =0

Determine the solution set of each equation in radians (for x) or degrees (for 0) to the nearest tenth as appropriate.
10) 3 cos20 + 2 cos 6 =1
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Answer Key:

—_
~
—_—
A
—

»
o
a
SNE
(€3]
SE
H_I

a1
~

=~

T 51
3)l— —
) 4 4}
n 3t 5n 7w
Yie 252
i
6

+2nT, 5—71 +2nT, 32_71 +2nm

6) {45° + 180°n, 101.3° + 180°n}

7y )L, & 2n 7 7 13w S 19
12767 37127 6" 127 37 12

T 5T
8) J— —
) 4’ 4
27 4
? 0'?”'7}

10) {70.5° + 360°n, 180° + 360°n, 289.5° + 360°n}
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Law of Sines and Law of Cosines

For reference, you can use chapters 8.1 and 8.2 of the openstax Precalculus text: https://openstax.org/details/books/precalculus

Solve the triangle.

D)

26 m Bk

260

Solve the problem.
2) To find the distance AB across a river, a distance BC = 1053 m is laid off on one side of the river. It is found that B =
101.3° and C = 17.0°. Find AB rounded to the nearest meter.

Find the area of triangle ABC with the given parts. Round to the nearest whole number.

3) A=264°
b=12.3in.
c=7.71n.

Find the missing parts of the triangle.

4) C=35°30"
a=18.76
c=16.15

5) A=179°
a=32vyd
b=65yd

6) B =63°30'
a=1220ft
c=7.80 ft

Find the missing parts of the triangle. (Find angles to the nearest hundredth of a degree.)

7) a=27ft
b=232ft
c=41ft

Find the area of triangle ABC with the given parts. Round to the nearest whole number.

8)a=17.4cm
b=15.0cm
c=13.4cm

9) Explain, in your own words, the situation called "the ambiguous case of the law of sines."

10) What happens if C = 90° when the law of cosines is applied in the form C2 = A2 + B2 - 2ab cos C?
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Answer Key

1) C=103°a=11.7m,b=20.7m
2) 350 m
3) 21.1 in.2
4) Ay =42°25', By = 102°05', by =27.20;
Ay =137°35', By = 6°55', by =3.35

5) no such triangle
6) b=11.17 ft, A =77°49', C = 38°41"
7) A=41.14°, B=51.24°, C= 87.62°
8) 97 cm2
9) Answers will vary

10) Answers will vary
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Vectors and Polar Coordinates

For reference, you can use chapters 8.1 and 8.2 of the openstax Precalculus text:
https://openstax.org/details/books/precalculus

Find the component form of the indicated vector.
1) Let u=(-9, -9, v=(-3, 3). Find -u + 9v.

Find the magnitude and direction angle (to the nearest tenth) for each vector. Give the measure of the direction angle as an angle
in [0,360°].

2) <_33 _49
Vector v has the given magnitude and direction. Find the magnitude of the indicated component of v.
3) a=38.3° vI=281

Find the vertical component of v.

Write the vector in the form <a, b>.
4)

26

Two forces act at a point in the plane. The angle between the two forces is given. Find the magnitude of the resultant force.
5) forces of 25.0 and 31.8 Ib, forming an angle of 162.8°

Find the dot product for the pair of vectors.

6)(-16, 9, (0, 15)

Find the angle between the pair of vectors to the nearest tenth of a degree.

(5. 9.(3.9

8) Starting at point A, a ship sails 57 km on a bearing of 188°, then turns and sails 37 km on a bearing of 330°. Find the
distance of the ship from point A.

9) Suppose you would like to cross a 209-foot wide river in a boat. Assume that the boat can travel 32 mph relative to the
water and that the current is flowing west at the rate of 6 mph. If the bearing is chosen so that the boat will land at a point
exactly across from its starting point, how long will it take for the boat to make the crossing? Give your answer to the
nearest second.
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The rectangular coordinates of a point are given. Express the point in polar coordinates with r >0 and 0° <0 <360°.
10) (2, -2)

Give the rectangular coordinates for the point.
11) (6, 225°)

For the given rectangular equation, give its equivalent polar equation.
12) 2x +3y=6

13) x2 + y2= 64

Plot the point.

o
14) [4, TJ

Graph the polar equation for 0 in [0°, 360°).
15)r=4+4sin 0

Al
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Answer Key

1) (-18, 36)

2) 5;233.1°

3) 174.2

4) z(6.73, 25.11)
5) 111b

6) 120

7) 65.6°

8) 36 km

9) 5 sec

10) (24/2, 315°)
11) (-34/2, -34/2)

6
12)r= 2cos0+3sin6

13)r=8
14)

15)
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Polar Form of Complex Numbers

For reference, you can use chapters 8.5 of the openstax Precalculus text:
https://openstax.org/details/books/precalculus

1) Graph the complex number. -5 -4i

Find the following quotient, and write the quotient in rectangular form, using exact values.
2) 12cis 158°
3cis 38°

3) Graph the complex number. -4i

4) Write the complex number in rectangular form. 8[cos % +1isin %]

5) Write the complex number in rectangular form. 9(cos 180° + i sin 180°)

Write the complex number in trigonometric form r(cos 0 +i sin 0), with O in the interval [0°, 360°).

6) 5+/3 + 5i

Find the product. Write the product in rectangular form, using exact values.
7) [8 cis 300°] [6 cis 330°]

8) Find the given power. Write answer in rectangular form: (2 - 2i)°

9) Find the given power. Write answer in rectangular form.: (- NEESIS
10) Find all cube roots of the complex number. Leave answers in trigonometric form: -125i
11) Find all cube roots of the complex number. Leave answers in trigonometric form: 3 + 3ia/3
12) Find all solutions of the equation. Leave answers in trigonometric form.: x3-8=0

13) Find all solutions of the equation. Leave answers in trigonometric form.: X -32=0

Use a table of values to graph the plane curve defined by the following parametric equations. Find a rectangular
equation for the curve.
14) x=2t, y=t+1, for tin [-2, 3]

15) Find a rectangular equation for the plane curve defined by the parametric equations: x =sint, y =3 cos't

16) Find a rectangular equation for the plane curve defined by the parametric equations.: x=sect, y=tant
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Answer Key

2) - 2+2ia/3
3)

4) 4n[3 + 4i
5) -9

6) 10(cos 30° + i sin 30°)

7) -48i
8) -128 + 128i
9) -64

10) 5 cis 90°, 5 cis °210, 5 cis 330°

11) 3/8 cis 20°, 3/3 cis 140°, 3/8 cis 260°

12) {2, 2 cis 120°, 2 cis 240°}

5

13) {2 cis 0, 2 cis 25—” 2 cis 2T 2 cis

6T

5

8
,2cl
c15457}

y :%x +1, for x in [-4, 6]

15) 9x2 + y2 =9

16) x2 -y2 =1
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Trigonometric Identities and Equations Review

You can use chapter 7 in the free Precalculus text at openstax for reference: https://openstax.org/details/books/precalculus

Use the fundamental identities to simplify the expression.
2
cos=0
1))

- +csc 0sin O
sin20

2) sin20 + tan20 + cos20

Verify that each equation is an identity.
3) cot2x = (csc x - 1)(csc x + 1)

cos

4)secpfttanf= -sinp

5) (sec a - tan a)(sec o + tan o)) = 1

6) cscs-sins=cosscots

Use Identities to find the exact value.
7) cos 255°

Find the exact value by using a sum or difference identity.
8) tan 105°

Find the exact value of the expression using the provided information.

1 1
9) Find tan(s + t) given that sin s = T with s in quadrant I, and sin t = - > with t in quadrant I'V.

Find the exact value by using a sum or difference identity.
10) sin 15°

Use trigonometric identities to find the exact value.
11) sin 25° cos 35° + cos 25° sin 35°

Use identities to find the indicated value for each angle measure.

2
12) cos 20 = 3 and 0 terminates in quadrant I Find sin 6.
1 . . .
13) cos 20 = T and 0 terminates in quadrant ITI Find cos 6.

Express the function as a trigonometric function of x.
14) cos 4x

Verify that each equation is an identity.
15) cos(4u) = 2 cos2(2u) - 1
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Write the product as a sum or difference of trigonometric functions.
16) 8 cos 14° cos 7°

Find the exact value by using a half-angle identity.
17) sin 75°

Determine all solutions of the equation in radians.

X . 1 . . T
18) Find sin 5> given that sin X =— and x terminates in 0 <x < 5

4

Solve the equation for the interval [0, 2).
19) cos2x +2 cosx+1=0

20) 2 sin2x = sin x

21) cos X = sin X

22) sin2x - cos2x =0

Determine the solution set of each equation in radians (for x) or degrees (for 0) to the nearest tenth as appropriate.

23)25in2x+sinx=l

Solve the equation for solutions in the interval [0, 2 7).
. A3
24) sin 4x = -5

1
25) sin X cos x =5

26) sin 2x +sinx =0
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Answer Key

1) csc20

2) sec20

3) cotZ x=csc2 x-1= (cscx - D(cscx + 1).

|, sinB_1+sinp l+sinp 1-sinp _ I-sin®p _  co®B _ cosp

cosp cosp  cosp  cosP 1-sinp cosP(l-sinf) cosP(l-sinf) I-sinp
2

4) secf+tan B =

5) (sec a - tan a)(sec o + tan o) = sec<a - tanZa = 1

. 1 . Ss
6) csc s -sin s =———-8in§ =————=———=C0S S "——— = COS S COt §
sin s sin s

7 «/54-‘«/5

8) -2-4/3
4\/§+\/_

ST

10) —“/grﬁ
3

1) —-

1o sin g2 N
)SIHQ—T

AJ101

13) cosef-T

14) cos#x - 6 sin2x cos2x + sinx
15) cos(4u) = cos[2(2u)] =2 cosz(2u) -1
16) 4(cos 21° + cos 7°)

17)%«/2 +4/3

18 8-24/15
) 4
19) {m}
n Sm
20) {0 Lo 6}
5
21){n T
n 3n 5Sn Tn
22) {4 404 4
T 3n
23) J—+2nm, — +2n7t — +2nn
6 2
24 l,l,ﬁ,ﬂ’ﬂ’ 13 St 19
12 3712267 127 37 12

N

TC
5){ e

21 T
26) {O’ 30 T}
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Polar Forms and Vectors Review

For reference, you can use chapters8 of the openstax Precalculus text: https://openstax.org/details/

books/precalculus

1) x=5(t-sint), y=5(1 -cost), 0 <t<4m
Graph the cycloid for t in the indicated interval.

1247

8+

N

2.5T1Y
24
L5

25T
2

Find the missing parts of the triangle.

3) A=98°
b=152 ft
a=43.4 ft
4)
C
54/6 10
A 60" >
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5) C = 35°30'
a=18.76
c=16.15

Find the missing parts of the triangle. (Find angles to the nearest hundredth of a degree.)

6) a =27 ft
b=32ft
c=41ft

Find the missing parts of the triangle.
7) C=112.5°
a=530m
b=9.66 m

Solve the problem.
8) Two ships leave a harbor together traveling on courses that have an angle of 125° between them. If they each
travel 501 miles, how far apart are they (to the nearest mile)?

9) If u=(-5,7), v=(-7, 6), and w =(-11, 2), evaluate u - (v - w).

Find the angle between the pair of vectors to the nearest tenth of a degree.
10) 5i - 3j, 51 - 6j

Find the magnitude and direction angle (to the nearest tenth) for each vector. Give the measure of the direction angle as
an angle in [0,360°].
11) (-3, -4

Two forces act at a point in the plane. The angle between the two forces is given. Find the magnitude of the resultant
force.
12) forces of 52 and 54 newtons, forming an angle of 90°

Solve the problem.
13) A hot-air balloon is rising vertically 12 ft/sec while the wind is blowing horizontally at 5 ft/sec. Find the angle
that the balloon makes with the horizontal.

14) A pilot wants to fly on a bearing of 65.3°. By flying due east, he finds that a 50-mph wind, blowing from the
south, puts him on course. Find the ground speed of the plane.

15) A box weighing 80 b is hanging from the end of a rope. The box is pulled sideways by a horizontal rope with
a force of 24 Ib. What angle, to the nearest degree, does the first rope make with the vertical?

Find the product. Write the answer in standard form.
16) 3i(3 + 6i)2

Simplify the power of i.
17 i79
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Find the following quotient, and write the quotient in rectangular form, using exact values.

12cis 158°

18
) 3cis 38°

Find the given power. Write answer in rectangular form.
19) (1 +1)20

Find all specified roots.
20) Fifth roots of 1.

Find all solutions of the equation. Leave answers in trigonometric form.
21)x2-32=0

For the given rectangular equation, give its equivalent polar equation.
22)x-y =10

23) X2 + y2= 64

Find a rectangular equation for the plane curve defined by the parametric equations.
24)x=t+4,y=t2

25)x=5tant y=4cott
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Answer Key

1) 10
2)r=—">-——"
Ty )T cos 0 - sin O
23)r=8
24)y =x2 - 8x + 16

20
25)y =~

2)

-2.5

3) B=20.3° C=61.7°, c =38.6 ft
4) A=45°,C =75, c=5[3+5
5) A1 =42°25', B = 102°05', b = 27.20;
Ap =137°35', Bp = 6°55', by = 3.35
6) A =41.14° B =51.24°, C = 87.62°
7) c=12.7m, A =22.7°, B = 44.8°
8) 889 mi
9) 8
10) 19.2°
11) 5; 233.1°
12) 75 newtons
13) 67.4°
14) 120 mph
15) 17°
16) -108 - 81i
17) -i
18) - 2+ 2iaf3
19) -1024
47 67 8

20) 1, cis 25—7-(, cis K cis 5 cis 5

21) {2 cis 0, 2 cis 25—” 2 cis 45—”, 2 cis 65—” 2 cis %}
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Cumulative Review of Trigonometry

Final review
1) Find the supplement of an angle whose measure is 37°45'2"

2) 139°47' + 108°48’

Convert the angle to decimal degrees and round to the nearest hundredth of a degree.
3) 45°31'46"

Convert the angle to degrees, minutes, and seconds.
4) 28.34°

Find the angle of smallest possible positive measure coterminal with the given angle.
5) 840°

Suppose that 9 is in standard position and the given point is on the terminal side of 6.
6) (6, 8); Find cos 6.

The triangles are similar. Find the missing side, angle or value of the variable.
7) x

. — —
4 b a=30 b=90 c=52

Evaluate the expression.
8) sin(-180°)

9) sec 270°

Identify the quadrant for the angle 0 satisfying the following conditions.
10)sin®>0and cos 6 <0

11)secO<0andtan <0

Use the fundamental identities to find the value of the trigonometric function.

12) Find csc 9, given that sin 6 = - % and 9 is in quadrant IV.

Without using a calculator, give the exact trigonometric function value with rational denominator.

13) cos 60°

14) sec 45°
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Suppose ABC is a right triangle with sides of lengths a, b, and c and right angle at C. Find the unknown side length .
15) Find csc Awhenb=8andc =17

Find a solution for the equation. Assume that all angles are acute angles.
16) sin(2p + 15°) = cos(3p - 25°)

17) Afire is sighted due west of lookout A. The bearing of the fire from lookout B, 5.1 miles due south of A, is N 48°
22'W. How far is the fire from B (to the nearest tenth of a mile)?

Convert the degree measure to radians. Leave answer as a multiple of m.
18) 330°

Convert the radian measure to degrees. Round to the nearest hundredth if necessary.
T
19) - —
) 5

Find the exact value without using a calculator.
. 3m
20) sSin T

21) Find h as indicated in the figure. Round your answer to the hundredths place.

26° 55’

EF— gm —3

55° 53’

Solve the problem.
22) Two wheels are rotating in such a way that the rotation of the smaller wheel causes the larger wheel to rotate.
The radius of the smaller wheel is 6.5 centimeters and the radius of the larger wheel is 17.0 centimeters.
Through how many degrees will the larger wheel rotate if the smaller one rotates 120°?

Graph the function over a one-period interval.

_1 iy
23)y= > cos4[x 3]
24) y =sin(2x-180)

Graph the function.
_ 1 U
25)y—tan[2x 6]
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26) y = 2 csc(3x + 60)

Solve the problem.
27) The temperature in Fairbanks is approximated by

_ .| 2n
T(x) = 37 sin [365 (x 101)] + 25,

where T(X) is the temperature on day x, with x = 1 corresponding to Jan. 1 and x = 365 corresponding to Dec. 31.
Estimate the temperature on day 10.

The function graphed is of the form y = a sin bx or y = a cos bx, where b > 0. Determine the equation of the graph.
28)

29)

Verify that each equation is an identity.
30) tan x(csc x - sin x) = cos X

31) (seca-tana)(seca+tana) =1
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33) A wheel is rotating at 3 radians/sec, and the wheel has a 54-inch diameter. To the nearest foot, what is the speed
of a point on the rim in ft/min?

Identify the quadrant for the angle 6 satisfying the following conditions.
34)secO<0andtan 6<0

35) Find cos(s + t) given that cos s = % with s in quadrant I, and sint= - % with tin quadrant IV.

Use trigonometric identities to find the exact value.
36) sin 100° cos 40° - cos 100° sin 40°

Find the exact value by using a sum or difference identity.
37) sin 15°

38) Find tan(s - t) given thatsins = - 31—\/31_3 with s in quadrant IV, and sint = - 1£OO with tin quadrant V.

39) cos 0 = % sin 0 <0 Find sin(26).

40) cos 20 = % and 0 terminates in quadrant Il Find cos 0.

Determine all solutions of the equation in radians.

41) Find cos g given thatcos 6 = - % and 6 terminates in 90° < 6 < 180°.

Find the exact value
3\

42) cos [arcsin %

J

3\
43) cos [Zarcsin T

J

Determine the solution set of each equation in radians (for x) or degrees (for 0) to the nearest tenth as appropriate.
44) 2sin2x+sinx=1

Solve the equation for the interval [0, 2m).
45) sin2x - cos2x = 0

Determine the solution set of each equation in radians (for x) or degrees (for 0) to the nearest tenth as appropriate.
46) 3cos20+2cos O =1

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree.
47) sin 20 = cos 0
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Solve the triangle.
48)

21m 51°

260

Find all th epossible values for the missing parts of the triangle.
49) A=23° a=35km b=55km

Find the missing parts of the triangle. (Find angles to the nearest hundredth of a degree.)
50)a=22ft b=32ft c=43ft

51) wo airplanes leave an airport at the same time, one going northwest (bearing 135°) at 407 mph and the other
going east at 345 mph. How far apart are the planes after 3 hours (to the nearest mile)?

Find the magnitude and direction angle (to the nearest tenth) for each vector. Give the measure of the direction angle as
an angle in [0,360°].
52) (-5, 12)

Vector v has the given magnitude and direction. Find the magnitude of the indicated component of v.
53) a=25.9° vI=85.6 Find the horizontal component of v.

54) Two forces, of 45.2 and 17.0 Ib, forming an angle of 141.9°, act at a point in the plane. Find the magnitude of the
resultant force.

Find the quotient. Write the answer in standard form.

9 - 3i
55) ———
)5—7|

Write the complex humber in trigonometric form r(cos 0 + i sin 0), with 0 in the interval [0°, 360°).

56) -6 - 6ix/3

Find the given power. Write answer in rectangular form.
57) (1 +i)20

Find all solutions of the equation. Leave answers in trigonometric form.
58) x° - 243=0

59) Find an equivalent equation in rectangular coordinates. r=cos0

Find a rectangular equation for the plane curve defined by the parametric equations.
60) x=t2+1,y=t2-1
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ANsSwers:

1) 142°14'58"
2) 248°35'

3) 45.53°

4) 28°20"24"
5) 120°

3
6) 3
7) x=39
80
9) Undefined

10) Quadrant Il
11) Quadrant Il

3

12) - 5

1
13) 5
14) A2

17
15) s
16) 20°
17) 7.7 mi

117t
18) =5~

19) -36°

20) %

21) 66.55m
22) 45.88°
23)

24)
Y
54
4+
3+
24+
1+
nom 3 _ smo3n Ink
4 2 4 4 2 4
25)
3--}'
T T T L] T Ix
- T
31
26)
3_
2H
s
t } } } } } } } 4
n n
27) -12°

28) y:4sin[% ]

29) y=-4 cos [% ]

Page 47



. . sin x
30) tan x(csc x - sin X) =tan X -csc X - tan X - sin X =
COS X
1 sinx . 1 sin2x _ 1-sin?x
— - -sinx = - = =
sinx  cos X COSX  COS X COS X
cos? x
=C0S X
COS X

31) (sec a - tan a)(sec a + tan &) = sec2ax - tana = 1

__1 _sinp _1+sinB _1+sinf
32)secﬁ+tanﬁ—cosf’ cosp  cosp  cosf
1-sinf _ 1—sin2ﬁ _ coszﬁ _
1-sinp cosp(l-sinB) cosP(l-sinp)
cos 3
1-sinp

33) 405 ft/min
34) Quadrant Il

35) a2 +6 22
36) %
37) Ao-A2 ; A2

38) -1

120
39) - 169

m%‘
o

40) cos O = -
5
41) 3
a2 A1
4
4+[3-3
43) 0

44) Iﬂ +anm, 56—” +2nm 32—“ + 2nnJL

45) ,fﬂl 3_“, 5_”, 7n)
‘L4 4 4° 4
46) {70.5° + 360°n, 180° + 360°n, 289.5° + 360°n}
47) {30°, 90°, 150°, 270°}
48) C=103°,a=94m,b=16.7m
49) B1 =38°,C1 =119° ¢1 =78 km
By =142°,Cy = 15° ¢cp =23 km
50) A =29.76° B = 46.22°, C = 104.02°
51) 2085 mi
52) 13; 112.6°

53) 77.0

54) 33 51b
L2
%) 57 37 A

56) 12(cos 240° + i sin 240°)

57) -1024

58) I3 cis 0, 3 cis — 2

59) x2 +y2 = x
60)y=x-2,x=1

, 3 cis—

47
5"’

, 3 cis—

67
5

81
.3 cis —
cis 5}
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SUMMARY

Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body’s center
of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces),
there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly
regulated throughout the walking cycle about all three spatial directions [|E(t)|=0], and therefore horizontal ground reaction forces
and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about
the body’s CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment
forces closely match experimental values (R2=0.91; R2y=0.90). Additionally, the centroidal moment pivot (point where a line parallel
to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting
how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions
to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental
momenta, indicating large segment-to-segment cancellations (~95% medio-lateral, ~70% anterior—posterior and ~80% vertical).
Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels
right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the
anterior—posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we
discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.

Key words: biomechanics, biped, locomotion, angular momentum, human.

INTRODUCTION

The advancement of a comprehensive model of human walking
is a formidable task and a critical research objective in the fields
of biomechanics, neural science and legged machine control.
Although many walking studies have put forth experimental and
theoretical descriptions of center of mass (CM) mechanics and
energetics (Saunders et al., 1953; Bekker, 1956; Alexander,
1976; Cavagna et al., 1976; Margaria, 1976; Mochon and
McMahon, 1980a; Mochon and McMahon, 1980b; McGeer,
1990; Lee and Farley, 1998; Croce et al., 2001; Kuo, 2002;
Ortega and Farley, 2005; Geyer et al., 2006; Srinivasan and
Ruina, 2006), surprisingly few investigations have specifically
focused upon whole-body rotational behavior. Clearly, a
comprehensive understanding of human walking would require
descriptions of not only global body translations but also
rotations. The objective of this investigation was to study the
rotational behavior of human steady-state walking through the
characterization of whole-body angular momentum, as well as
body segment momenta, computed about the body’s CM.

The preponderance of research into human angular momentum
behaviors has focused not on walking but on other movement tasks
such as sit-to-stand maneuvers (Riley et al., 1997), running
(Hinrichs et al., 1983; Hinrichs, 1982; Hinrichs, 1987; Hinrichs,
1992) and various sporting activities (Frohlich, 1979; Dapena and
McDonald, 1989; Dapena, 1978; Dapena, 1993; LeBlanc and
Dapena, 1996; King 1999). Specific to walking maneuvers,
Elftman (Elftman, 1939) calculated the angular momenta of all
body segments across one walking step, from heel strike to toe-off.

THE JOURNAL OF EXPERIMENTAL BIOLOGY

Based on pilot data from a single human participant, he argued that
the arms reduced both angular momentum and rotation about both
vertical and medio-lateral (left-right) axes.

Following Elftman’s findings in the late 1930s, it was not until
the turn of the century that additional research was conducted in
the area of human walking angular momentum behaviors. Xu and
Wang (Xu and Wang, 1998) quantified angular momenta for lower-
extremity segments for altering direction during walking, and
Simoneau and Krebs (Simoneau and Krebs, 2000) studied whole-
body angular momentum in elderly participants in an attempt to
quantify balance deficiencies in the elderly population. More
recently, a pilot study on a single study participant found that
whole-body angular momentum is highly regulated about all three
spatial directions in walking, not deviating substantially from zero
throughout each phase of gait (Popovic et al., 2002; Gu, 2003;
Popovic et al., 2004a).

Although angular momentum behaviors have been studied for
human walking, the studies have been limited to a single study
participant and often a single walking step. In this study we
examined angular momentum behaviors of 10 study participants
walking at self-selected speeds. Motivated by the findings of
previous pilot investigations that showed a relatively small whole-
body angular momentum, we hypothesized that horizontal ground
reaction forces and the center of pressure (CP) trajectory in steady-
state walking can be explained predominantly through an analysis
that assumes zero net moment about the body’s CM. To test the
hypothesis, we first derived what the horizontal ground reaction
force, and CP location, would be if no moments were to act about
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the body’s CM. Using a 16-segment human model and gait data
from the 10 study participants, we tested the hypothesis by
comparing the calculated zero-moment forces and CP trajectory
with measured values from a force platform.

We also examined segmental contributions to whole-body
angular momentum. Motivated by Elftman (Elftman, 1939), we
hypothesized that whole-body angular momentum is small
throughout the walking gait cycle, despite substantial segmental
momenta, indicating large segment-to-segment cancellations.
Specifically, since the arms and legs alternately protract and retract
within the sagittal plane, we anticipated that adjacent limb segment
contributions are effectively balanced in the medio-lateral direction.
Furthermore, due to pelvic obliquity, where the leg hip that is
entering the swing phase drops lower than the adjacent leg hip
(Saunders et al., 1953), we hypothesized that angular momenta
contributions of the pelvis and abdomen are balanced by
contributions from the rest of the body in the anterior—posterior
(front-back) direction. Still further, due to pelvic rotation where the
pelvis and upper body rotate about the vertical axis over the stance
leg in walking (Saunders et al., 1953), we anticipated that leg
angular momentum is balanced by upper-body momentum in the
vertical direction. To test these hypotheses, we once again employed
the 16-segment human model and gait data measured from the
10 study participants. Principal component (PC) analysis was
performed on all 16 body segments’ angular momenta to produce
PCs for each of three orthogonal directions. We then calculated their
respective time-dependent weighting coefficients, or tuning
coefficients. Finally, we obtained the amount and source of
segmental momentum cancellation for all three spatial directions.

MATERIALS AND METHODS
Experimental procedures

Kinetic and kinematic walking data were collected at the Gait
Laboratory of Spaulding Rehabilitation Hospital, Harvard Medical
School, in a study approved by the Spaulding committee on the Use
of Humans as Experimental Subjects. Ten healthy adult
participants, five male and five female, with an age range from 20
to 38 years, volunteered for the study. The participants walked at a
self-selected speed across a 10 m walkway in the Motion Analysis
Laboratory. Participants were timed between two fixed points to
ensure that the same walking speed was used between experimental
trials. Walking speeds within a +5% interval from the self-selected
speed were accepted. For each study participant, a total of seven
walking trials were collected.

The data collection procedures were based on standard
techniques (Kadaba et al., 1989; Winter, 1990; Kadaba et al., 1990;
Kerrigan et al., 2000; Kerrigan et al., 2001). An infrared camera
system (eight cameras, VICON 512 motion analysis system,
Oxford Metrics, Oxford, UK) was used to measure the three-
dimensional locations of reflective markers at 120 frames s™!. A
total of 33 markers were placed on various parts of a participant’s
body: 16 lower-body markers, five trunk markers, eight upper-limb
markers and four head markers. The markers were attached to the
following bony landmarks: bilateral anterior superior iliac spines,
posterior superior iliac spines, lateral femoral condyles, lateral
malleoli, forefeet and heels. Additional markers were rigidly
attached to wands over the mid-femur and mid-shaft of the tibia.
The kinematics of the upper body were also collected with markers
placed on the following locations: sternum, clavicle, C7 vertebra,
T10 vertebra, head, and bilaterally on the shoulder, elbow and wrist.
The VICON 512 system was able to detect marker position with a
precision of ~1 mm.
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During the walking trials, ground reaction forces were measured
synchronously with the kinematic data at a sampling rate of
1080 Hz using two staggered force platforms (model no. 2222 or
OR6-5-1, Advanced Mechanical Technology Inc., Watertown,
MA, USA) embedded in the walkway. The platforms measured
ground reaction force and CP location at a precision of ~0.1 N and
~2 mm, respectively.

Human model

A human model was constructed in order to calculate physical
quantities such as CM position and angular momentum. The model
and coordinate system used in the study are shown in Fig. 1. The
model comprises 16 rigid body segments: feet, tibias, femurs,
hands, forearms, arms, pelvis-abdomen, chest, neck and head. The
feet and hands were modeled as rectangular boxes. The tibia
segments, femur segments, forearm segments and arm segments
were modeled as truncated cones. The pelvis-abdomen and chest
segments were modeled as elliptical slabs [ellipses in the horizontal
(x—y) plane and extruded in the vertical (z) direction]. The neck was
modeled as a cylinder, and the head was modeled as a sphere. The
following 28 anthropometric measurements were taken for each
study participant to accurately construct a representative model: (1)
body weight, height, and total leg length measured from the medial
malleolus to the anterior superior iliac spine; (2) lengths, widths
and thicknesses of foot and hand segments; (3) segment lengths and
proximal/distal base radii of tibia, femur, forearm and arm; (4)
heights, widths and thicknesses of chest and pelvis-abdomen
segments; and (5) radius of the head. The neck radius was set equal
to half the head radius. The human model had a total of 38 degrees
of freedom, or 32 internal degrees of freedom (12 for the legs, 14
for the arms, and six for the head, neck and trunk) and six external
degrees of freedom.

For acceptance of the human model, we required that each
segment’s relative mass and density were in reasonable agreement
with human morphological data from the literature (Winter, 1990).
Relative mass was defined as segment mass divided by total body
mass, and density as segment mass divided by segment volume. We
accepted a segment design if both its relative mass and density fell
within one standard deviation of the segment’s mean experimental
values from the literature. When the relative mass of each model
segment was set equal to each segment’s mean experimental value

zy S = 'z
S g
X ‘ y
- - Saan ¥
| = | [ -
I = b3

Fig. 1. Human model and coordinate frame. The human model has 16
segments with 32 internal degrees of freedom. Using human morphological
data from the literature, mass is distributed throughout the model in a
realistic manner. The coordinate frame is oriented by the right-hand rule
with the z-axis directed vertically, the y-axis pointing in the direction of the
walking motion (anterior—posterior direction), and the x-axis pointing to the
right of the participant (medio-lateral direction).
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from the literature, model segment density often became abnormal,
falling beyond two standard deviations from the experimental mean.
In distinction, when the density of each model segment was set equal
to each segment’s mean experimental value from the literature,
model relative mass then became abnormal. As a resolution to this
difficulty, we performed an optimization where model relative mass
was varied until the error between model and experimental density
values were minimized. We then confirmed that each segment’s
relative mass and density fell within one standard deviation of their
experimental means reported in Winter (Winter, 1990).

In detail, the relative mass distribution throughout the model,
Mg, described by a 16-component vector corresponding to the 16
segments of the model, was modeled as a function of a single
parameter o such that:

Mg() = (ME®+aVR) / (1+a) . 1)

Here ME*P is a 16-component vector of mean relative mass values
obtained from the literature (Winter, 1990), and VR is a 16-
component vector of relative volumes computed directly from the
human model. The relative volume of the i-th segment, Vi, was
defined as the ratio of the segment’s volume, Vi, over the total
body volume, V, or Vk=V'/V. By using Eqn 1, total body mass and
individual segment volumes computed from the model, model
segment densities were computed and represented by a 16-
component vector D(w). Here the density of the i-th segment was
defined as D'(0)=MqpjecMk(e)/V', where Mgpjcet is total body
mass and V' is the volume of the i-th segment. The final relative
mass distribution was obtained as Mgr=Mg(omin) Where apin
minimized the absolute error between the distribution of segment
densities, f)(a), and the mean distribution of segment densities
from the literature, D®™P. This analysis procedure may be
expressed as:

min|l_5(o¢) - BExp\ = min \/ 2 [Di(c) — DEXPi]2

= —
M _ MRXP + OLminVR
= Olpin = R=E— —7.

2

1+ Olmin

Whole-body center of mass
The body’s CM location was estimated using the human model and
joint position data from the motion capture measurements. The CM
position, 7cy, of the entire 16-segment model was calculated as a
sum of the products of the segments’ relative masses and CM
locations, or:

Fom= D MiFoy. 3)

Here Mk is the relative mass of the i-th body segment, and 7y is
the CM location of the i-th body segment relative to the lab frame.

CM error estimate
To estimate the error in the CM calculation, we first collected
kinematic data from the aerial phase of running and then, using Eqn
3, estimated the body’s aerial phase CM trajectory. We found good
agreement between this estimated CM trajectory and a ballistic
trajectory (R*=0.99; see Eqn 11 for R? definition). It was also noted
that, during the aerial phase, the maximal distance error between
these trajectories was less than 2 mm. As an additional check of
CM error, we first collected kinetic and kinematic data while a
participant stood on the force platform in a static standing pose.
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The projection of the CM onto the horizontal ground surface, or
xcm and yewm (see Fig. 1), was computed from the human model
using Eqn 3, and then compared with the CP location measured
directly from the force platform. The separation distance between
the CM projection on the ground and the CP was ~3 mm. To
determine whether the error changed appreciably for a different
static pose, we repeated the experiment with one leg retracted
rearward and the second leg protracted forward (comparable to the
body’s posture during the double-support phase of walking). Using
this second pose, the CM model error was still small (~3 mm). At
a self-selected gait speed, the body’s CM oscillates with a peak-to-
peak amplitude of between 4 and 5 cm in the medio-lateral (x)
direction (Crowe et al., 1995). Thus, the estimated CM model error
was less than 10% of these oscillations.

Whole-body angular momentum and moment
Whole-body angular momentum was estimated using the human
model and kinematic gait data. Angular momentum, L, was
calculated as the sum of individual segment angular momenta about
the body’s CM, or:

16
L= 2 [(Fen—Tom) X mF-Tey) + ] . (€

i=1

The first term within the square brackets is the angular momentum
due to the i-th segment’s CM movement. Here 7cy is the CM
position of the entire body defined in Eqn 3, and Vcy is the whole-
body CM velocity in the lab frame. Further, 7y and ¥ are the i-th
segment’s CM position and velocity in the lab frame, respectively,
and m; is the i-th segment’s mass. The second term within the square
brackets is the angular momentum of the i-th segment about its CM
position. Here 7* and ! are the i-th segment’s inertia tensor (3 X 3)
and angular velocity (3 X 1) about the segment’s CM, respectively.

In order to reduce data variance across study participants,
angular momentum was represented in dimensionless form using a
normalization constant Ngypjeer, €qual to the product of the
participant’s mass Mupject, CM height Hgpiect, and the mean self-
selected gait speed Vypjeer across seven gait trials, or:

Nsubjecl = MsubjectvsubjectHsubject . (5)

For each participant, the CM height was estimated during upright
standing using the human model, the motion capture data, and Eqn
3. Angular momentum was computed using Eqn 4 for each gait
cycle and then put into dimensionless form by dividing by the
normalization constant Ngpjeet defined in Eqn 5. Dimensionless
angular momentum was then plotted versus percentage gait cycle
equal to gait time divided by total cycle time. At each percentage
cycle time, the mean and standard deviation of the dimensionless
angular momentum were computed over a total of 70 walking trials
(10 participants, 7 gait trials per participant).

An alternative method for computing angular momentum is by
integration of the moment about the CM. We computed angular
momentum in this manner and compared the result to the angular
momentum estimate of Eqn 4. We found little difference between
these two estimates (R? values of 0.97,0.96 and 0.98 for L., Ly and
L,, respectively). We preferred computing angular momentum
directly from kinematics data because a single methodology could
then be used when estimating both whole-body angular momentum
and individual segment momenta in walking. The topic of
individual segment angular momenta is addressed in the subsequent
Materials and methods section entitled ‘Segmental contributions to
whole-body angular momentum’.
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Angular momentum error estimate

To estimate the error in the angular momentum calculation, we first
collected kinematic data from the aerial phase of running where
angular momentum is a conserved quantity (assuming air drag
exerts a negligible moment). From the flight phase kinematic data
and Eqn 4, the angular momentum vector for the aerial phase was
obtained, and one standard deviation about the mean value was
assigned to be the model error for each spatial direction. To
quantify its relative size, model error was then compared with the
maximum angular momentum value found during the walking
cycle about each spatial direction. Using walking data from the
same study participant that participated in the running experiments,
we first calculated the mean angular momentum curve for each
spatial direction (n=7 walking trials). The maximum angular
momentum values from the mean curves were then compared with
the model errors for the three orthogonal directions. We found the
angular momentum errors were 1.7%, 42% and 10% of the
maximum angular momentum values in the medio-lateral (x),
anterior—posterior (y) and vertical (z) directions, respectively (see
Fig. 1 for coordinate frame specifications).

In addition to angular momentum, CM moment 7 was
estimated by taking the rate of change of angular momentum
at each percentage cycle time. Moment was then put into
dimensionless form using the scaling factor MupjecGHsubjects
where G is the gravitational constant. Similar to the angular
momentum data analysis procedure, dimensionless CM
moment was plotted versus percentage gait cycle, and at each
percentage cycle time the mean and standard deviation were
computed over a total of 70 walking trials.

Horizontal ground reaction force predictions

A key hypothesis in this paper is that angular momentum is highly
regulated in steady-state human walking about all three orthogonal
directions [|L()|=0], and therefore horizontal ground reaction forces
can be explained predominantly through an analysis that assumes
zero net moment about the body’s CM. To test this hypothesis, we
first derived a relationship between horizontal ground reaction force,
whole-body CM, and CP consistent with zero net moment. We then
compared the predicted zero-moment forces with ground reaction
forces measured directly from a force platform.

The horizontal component (hor) of the total moment about
the CM [T|hor:(Tx,Ty):(TCM-?,TCM-]_" )] may be expressed as:

—

. . . 4T
T|hor = [Fep—rem) X Flpor = E |hor P (6)

where F is the ground reaction force, and 7cp is the CP location on
the ground surface. The CP ground reference point is frequently
used in the study of human gait and postural balance (Winter, 1990;
Rose and Gamble, 1994). For a body in contact with the force
platform, the position of the CP, measured relative to a lab frame
reference point located on the force platform walking surface, is
calculated as:

)

M,
Xcp=———

and

yep=—, ®)

SRS
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where F is the measured vertical ground reaction force, and M,
and M, are horizontal moments measured about that same lab
reference point.

Eqn 6 can be solved for the horizontal ground reaction forces,
or:

F, T,
Fr=9—— (xem=Xcp) p + (= — - ()]
icm icM
S —
FXZero-moment F)I(\/Ioment
F, T,
Fy=9— OcmYep) p+{—¢ > (10)
ZcM icM
S —
Zero- t M t
F-'y £ro-momen E\’ omen!

where T and T, are the CM moments in the medio-lateral (x) and
anterior—posterior (y) directions, respectively. Throughout this
manuscript we refer to the first and second terms on the right-hand
sides of Eqns 9 and 10 as the zero-moment and moment force
contributions! to the horizontal ground reaction forces, respectively
(Popovic et al., 2005). To evaluate the hypothesis that horizontal
ground reaction forces can be explained predominantly through a
zero-moment analysis, zero-moment forces F. "Zero-moment g
Feromoment were compared with the actual horizontal ground
reaction forces measured from a force platform. As defined by Eqns
9 and 10, these zero-moment forces were obtained using the
calculated position of body CM (Eqn 3), the experimentally
measured CP, and the experimentally determined vertical ground
reaction force.

To assess the amount of agreement between zero-moment model
forces and experimentally measured horizontal forces, we used the
coefficient of determination, R?, where R?=1 only if there is a
perfect fit and R?=0 indicates that the model’s estimate is worse
than using the mean experimental value as an estimate. More
specifically, R*> was defined as:

Nrsial - Npercent
i i 2
(F Exp™ Mod)

1--=L A : (11)

Nrviat Npercent

(F]if{xp_FExp)2

=l j=1

where F' Exp and Fj,q are the forces taken at the j-th percentage gait
cycle of the i-th trial for the experimental data and model-predicted
data, respectively. Before computing R? values for each spatial
direction and study participant, both experimental and zero-
moment forces for the medio-lateral (x) and anterior—posterior (y)
directions were plotted versus percentage gait cycle (equal to gait
time divided by total cycle time). We then computed medio-lateral
(x) and anterior—posterior (y) R* values for each participant by
summing over all walking trials (Nr,=7) and gait percentage times
analyzed (Npercen=100).

In Eqn 11, experimental mean Ffy, is the grand mean over all
walking trials and gait percentage times analyzed, or:

Nrial Npercent

1

£ 12)

F Exp = Exp -

NTrialNPercem =1 j=1

"It is noted that moment as used here refers to horizontal moment and not
vertical moment.
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We used a non-parametric Wilcoxon matched-pairs test (Wilcoxon,
1945) for comparing the two R? values corresponding to the medio-
lateral (x) and anterior—posterior (y) directions. This statistical
significance test was performed to look for differences in the
capacity of the zero-moment force model to predict experimental
force equally well in the two horizontal directions.

Center of pressure predictions

An alternative strategy for quantifying the degree to which whole-
body angular momentum is regulated in walking is to estimate a
zero-moment CP position. This ground reference point, previously
defined in the robotics literature, is called the centroidal moment
pivot (CMP) (Herr et al., 2003; Hofmann, 2003; Popovic et al.,
2004a; Popovic et al., 2005; Goswami and Kallem, 2004). The
CMP location, Fcmp, is defined as the point where a line parallel
to the ground reaction force, passing through the CM, intersects
with the ground surface. As its name implies, when the CMP
coincides with the CP, no horizontal moments act about the body’s
CM. In distinction, when these ground reference points diverge,
non-zero horizontal CM moments exist. To further quantify
whole-body rotational dynamics, we compare a calculated CMP
trajectory with an experimentally measured CP trajectory from the
force platforms.

The CMP can be expressed mathematically by requiring that the
cross-product of the CMP-CM position vector and the ground
reaction force vector vanishes, or:

[(Fomp—7em) X Flnor =0 . (13)

By expanding this cross-product, the CMP location can be written
in terms of the CM location and the ground reaction force, or:

F
XeMP = XM — — Zem (14)
z
and

F,
YeMP = YoM — — Zem - (15)
FZ

CP CMP CP=CMP

Fig. 2. Centroidal moment pivot (CMP). The CMP is the point where the
ground reaction force would have to act to keep the horizontal component
of the whole-body angular momentum constant. When the moment about
the center of mass (CM) is zero (B), the CMP coincides with the center of
pressure (CP). However, when the CM moment is non-zero (A), the extent
of separation between the CMP and CP is equal to the magnitude of the
horizontal component of moment about the CM, divided by the normal
component of the ground reaction force.
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When the CMP departs from the CP, there exist non-zero
horizontal CM moments, causing variations in whole-body angular
momentum (see Fig. 2A). While by definition the CP cannot leave
the ground support base?, the CMP can — but only when horizontal
moments act about the CM. In this investigation, the CMP was
calculated using Eqn 14 and 15, the calculated CM position from
the human model, and the ground reaction force measured from
the force platforms. We then computed the mean separation
distance between the CMP and CP points, normalized by foot
length, across the entire gait cycle. If angular momentum is highly
regulated in walking and CM moments are small, we anticipate
that the CMP location should coincide with the experimentally
measured CP position (see Fig. 2B).

Segmental contributions to whole-body angular momentum
Motivated by Elftman (Elftman, 1939), in this paper we tested the
hypothesis that whole-body angular momentum is small throughout
the walking cycle, despite substantial segmental momenta,
indicating large segment-to-segment cancellations. To investigate
the segmental movement correlations in connection with angular
momentum, we used principal component (PC) analysis. We first
obtained the segmental angular momentum PCs together with the
amount of data explained by each PC. We then calculated their
respective weighting coefficients, or tuning coefficients. Finally,
we obtained the level of momentum cancellation between body
segments for all three spatial directions, and the strategy employed
by the body to achieve that level of cancellation.

Principal component analysis

PC analysis (e.g. Jackson, 1991) was performed on all segmental
angular momenta, for each of the three spatial components, to
produce PCs. Each PC was a 16-component unit vector, P
corresponding to the 16 body segments of the human model. Here
Pj represents the i-th PC in the j-th direction. Vector components P}
denoted the relative contributions of the g-th body segment to P}.
As is customary, each PC was assigned a value for the percentage
of data explained, DE!;, where j=1...3 denotes the number of spatial
components, and i=1...N corresponds to the total number of PCs
(equal to the number of human model segments, i.e. N=16).

The PC vectors and the corresponding percentages of data
explained were obtained using the MATLAB statistical toolbox
(MathsWorks Inc., Natick, MA, USA). The 16-component angular
momentum vector was compactly represented as:

N
K= P, (16)
i=1

where Cj(z), te(0%, 100%) are time-dependent tuning coefficients.
The components of the momentum vector defined in Eqn 16
correspond to the 16 segments of the human model.

Normalized tuning coefficients
In order to extract directional dependence, we introduced the
normalized tuning coefficients ¢/(¢), such that:

N N
A =14 2 [Ci()]2 2 ciiny - P, a7

i=1 i=1

2When in single support, the support base is the outline of the part of the stance
foot that is actually in contact with the ground. When in double support, where
both feet are on the ground, the support base is the smallest convex shape that
includes all points where both feet are in contact with the ground.
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where the expression in the brackets represents the magnitude of the
angular momentum vector in the N-dimensional space. It is noted
here that the time-dependent normalized tuning coefficients satisfy:

N
E|¢;(t)|2=1, Vj=1..3, te (0%,100%). (18)
i=1

Analysis was performed to find the smallest number of angular
momentum PCs necessary to explain greater than 90% of the
segmental angular momentum data. To determine the minimum
number of PCs to capture both inter- and intrasubject variability,
both participant-dependent and participant-independent analysis
methods were performed. For the participant-dependent method, PC
analysis was performed for each participant across seven walking
trials, whereas for the participant-independent method, PC analysis
was conducted across all participants and walking trials (70 trials).

Segmental angular momentum cancellation
The participant-dependent PCs were used to estimate the amount
of segmental momentum cancellation for each participant and j-th
spatial direction, or:

16 2

S;=1- EDE? B R I (19)

where g=1...N and where Ng=4 sufficed for the level of precision
in our study. The net cancellation was therefore expressed as a sum
of squares (i.e. treated as independent variables or orthogonal
directions) of cancellations, across the largest PCs, weighted by
their respective data explained.

To test whether the amount of angular momentum cancellation
for all 10 participants across the three spatial directions was
sampled from the same distribution, we used a non-parametric
Friedman ANOVA test (Friedman, 1937; Friedman, 1940). This
statistical significance test was performed to look for differences in
the amount of angular momentum cancellation across the three
orthogonal directions, or vertical (z), anterior—posterior (y) and
medio-lateral (x). Two types of non-parametric post hoc tests were
independently performed to compare cancellation for pairs of
spatial directions. These tests were the Dunn procedure with
Wilcoxon test (Wilcoxon, 1945; Dunn, 1964) and the minimum
significant difference (Portney and Watkins, 2000).

RESULTS
Whole-body angular momentum and moment
Angular momentum estimations
To quantify whole-body rotational behavior during steady-state
walking, angular momentum was computed from kinematic gait
data, as defined in Eqn 4. Angular momentum curves, scaled by
MiubjectVsubjectHsubject> are shown in Fig. 3A versus percentage gait
cycle. Throughout the gait cycle, the absolute value of the
normalized angular momentum mean, plus one standard deviation,
remains smaller than 0.05, 0.03 and 0.01 in the medio-lateral (x),
anterior—posterior (y) and vertical (z) directions, respectively.

3The angular momentum curves shown in Fig. 3A agree well with the
measurements of Elftman (Elftman, 1939), in terms of overall curve shape, as
well as peak momentum values in the medio-lateral (x), anterior—posterior (y) and
vertical (z) directions.
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To provide the reader with a better understanding of the relative
size of these measured human values, we computed the angular
momentum about the CM of single-segment, rigid-body models. In
the vertical (z) direction, we computed the angular momentum
about the CM of a rigid body rotating about a stationary vertical
axis passing through the stance foot with an angular velocity equal
to Viupjec W, where W is half the foot separation distance in the
medio-lateral (x) direction during quiet standing. The angular
momentum, scaled by MpjectVeubjectsubject, for this  simple
comparison case is then equal to I;/(MupjectH subjectW). Using the
human model and kinematic data from the 10 study participants,
we computed the average I, value during the single-support phase
for all 10 participants. Using this value, the normalized angular
momentum for the rotating rigid body was equal to ~0.05, 5-fold
larger than our measured human angular momentum value of 0.01
in the vertical (z) direction.

In the medio-lateral (x) direction, the normalized angular
momentum about the CM of a physical inverted pendulum falling
forward while rotating about a stationary rotational axis at the
ground surface is Io/(Mupjecd szubjea), assuming an angular velocity
equal to Viupject/Hsubject and a moment of inertia about the CM equal
to L. Once again, using the human model and kinematic data from
the 10 study participants, we computed the average I, value during
the single-support phase for all 10 participants. Using this value,
the normalized angular momentum for the physical inverted
pendulum falling forward was equal to ~0.2, 4-fold larger than our
measured human angular momentum value of 0.05 in the medio-
lateral (x) direction.

The authors cannot think of a simple comparison case for the
peak angular momentum in the anterior—posterior (y) direction.
Thus, the normalized peak human value of 0.03 in the
anterior—posterior (y) direction can be compared with both the
medio-lateral (x) and the vertical (z) single-segment, rigid-body
values; the vertical (z) rigid body value of 0.05 is 1.7-fold larger,
and the medio-lateral (x) value of 0.2 is over 6-fold larger, than the
human value of 0.03.

CM moment estimations
Moment curves, scaled by MpjectGHsupject, are shown in Fig. 3B
versus percentage gait cycle. Throughout the gait cycle, the
absolute value of the normalized CM moment mean, plus one
standard deviation, remains smaller than 0.07, 0.03 and 0.014
dimensionless units in the medio-lateral (x), anterior—posterior (y)
and vertic